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Abstract--We give conditions ensuring that multilayer jeedJorward networks with as Jew as a single hidden layer 
and an appropriately smooth hidden layer activation fimction are capable o f  arbitrarily accurate approximation 
to an arbitrao' function and its derivatives. In fact, these networks can approximate functions that are not 
dtifferentiable in the classical sense, but possess only a generalized derivative, as is the case jor  certain piecewise 
dtlf[erentiable Junctions. The conditions imposed on the hidden layer activation function are relatively mild: the 
conditions imposed on the domain o f  the fimction to be approximated have practical intplications. Our ap- 
proximation results provide a previously missing theoretical justification jor the use of  multilayer /~'ed/brward 
networks in applications requiring simultaneous approximation o f  a function and its derivatives. 
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1. I N T R O D U C T I O N  

The capability of sufficiently complex multilayer 
feedforward networks to approximate an unknown 
mapping./~. R' ----~ R arbitrarily well has been recently 
investigated by Cybenko (1989), Funahashi (1989), 
Hecht-Nielsen (1989), Hornik,  Stinchcombe, and 
White (1989) (HSW) (all for sigmoid hidden layer 
activation functions) and Stinchcombe and White 
(1989) (SW) (non-sigmoid hidden layer activation 
functions). In applications, it may be desirable to 
approximate not only the unknown mapping, but 
also its unknown derivatives. This is the case in Jor- 
dan's (1989) recent investigation of robot learning of 
smooth movement .  Jordan states: 

The Jacobian matrix 8z/Ox . . . is the matrix that relates 
small changes in the controller output to small changes in 
the task space results and cannot be assumed to be avail- 
able a priori, or provided by the environment. However, 
all of the derivatives in the matrix are forward derivatives. 
They are easily obtained by differentiation if a forward 
model is available. The forward model itself must be 
learned, but this can be achieved directly by system iden- 

Acknowledgements: We arc indebted to Angelo Melino for 
pressing us on the issue addressed here and to the referees for 
numerous helpful suggestions. White's participation was sup- 
ported by NSF Grant SES-8806990. 

Requests for reprints should be sent to Halbert White, De- 
partment of Economics, D-008, University of California, San 
Diego. La Jolla, CA 92093. 

tification. Once the model is accurate over a particular 
domain, its derivatives provide a learning operator that 
allows the system to convert errors in task space into errors 
in articulatory space and thereby change the controller. 

Thus, learning an adequate approximation to the Ja- 
cobian matrix of an unknown mapping is a key com- 
ponent of Jordan 's  approach to robot learning of 
smooth movement .  

Despite the success of Jordan 's  experiments,  there 
is no existing theoretical guarantee that multilayer 
feedforward networks generally have the capability 
to approximate an unknown mapping and its deriv- 
atives simultaneously. For example,  a network with 
hard limiting hidden layer activations approximates 
unknown mappings with a piecewise-constant func- 
tion, the first derivatives of which exist and are zero 
almost everywhere. Obviously, the derivatives of such 
a network output function cannot approximate the 
derivatives of an arbitrary function. 

Intuition suggests that networks having smooth 
hidden layer activation functions ought to have out- 
put function derivatives that will approximate  the 
derivatives of an unknown mapping. However ,  the 
justification for this intuition is not obvious. Consider 
the class of single hidden layer feedforward networks 
having network output functions belonging to the set 

2. "(G) -~ {g : x"-~ R[ g(x) : /:,G(_i';,,): 
: 1 

x ~ R ' , / I / ~ R , ) ' / ~ R " ~ , j  = 1 . . . . .  q , q ~ N } ,  
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where x represents an r vector of network inputs 
(r E N ~ {1, 2 . . . .  }), 2 = (1, x t )  ~ (the superscript 
T denotes transposition),/J~ represents hidden to out- 
put layer weights and ~'/represents input to hidden 
layer weights, .] = 1 . . . . .  q, where q is the number 
of hidden units, and G is a given hidden unit acti- 
vation function. The first partial derivatives of the 
network output function are given by 

2 og(x)/Ox, = I],7,,DG(.~"7), t : 1 . . . .  r. 
: ] 

where x~ is the ith component  of x,  7, is the ith 
component  of )'i, i = 1 . . . . .  r(Tj, is the input layer 
bias to hidden unit j) ,  and D G  denotes the first de- 
rivative of G. Available results ensure that there exist 
choices for t ,  and 7,, J = l . . . . .  q for which ag/a& 
can well approximate OJTOx, the derivative of the 
unknown mapping. (Note that if G is sigmoid, then 
D G  is non-sigmoid, so that the results of S W  are 
relevant.) The problem is that these choices for/]/  
and )'i are not necessarily the choices for which g 
adequately approximates f or for which ag/ax~, ap- 
proximates Of~axe, for h # i. Nor is it obvious that a 
single set of weights exists that simultaneously en- 
sures an adequate approximation to f and its deriv- 
atives. 

Our purpose here is to establish rigorously that 
such a set of weights does indeed exist, and that 
multilayer feedforward networks with as few as a 
single hidden layer and fairly arbitrary hidden layer 
activation functions are in fact capable of arbitrarily 
accurate approximation to an unknown mapping and 
its derivatives, to as many orders as desired. 

This fact not only justifies corresponding aspects 
of Jordan's (1989) approach to network learning of 
smooth movements,  but generally supports use of 
multilayer feedforward networks in any application 
requiring approximation of an unknown mapping and 
its derivatives. For example, a net appropriately 
trained to approximate the transfer function of a 
(perfectly measured) deterministic chaos (e.g., as in 
Lapedes & Farber,  1987) could be used to obtain 
information on the Lyapounov exponents of the un- 
derlying chaos. (The Lyapounov exponents are de- 
fined in terms of the first derivatives of the transfer 
function.) 

Another  potential application area is economics. 
where theoretical considerations lead to hypotheses 
about the derivative properties (e.g,, "elasticities." 
a In f /O In xi = (Of/Oxi) ( x i / f ) ) ,  of certain functions 
arising in the theory of the firm and of the consumer 
(production functions, cost functions, utility func- 
tions and expenditure functions). (See, e.g., Varian, 
1978.) Approximation of these functions and their 
derivatives can aid in confirmation or refutation of 
particular theories of the firm or the consumer. Such 
analyses have been conducted by Elbadawi, Gallant, 
and Souza (1983) using Fourier series. An approach 

based on kernel regression is described by Vinod and 
Ullah (1985} (see also Ullah. 1988~. Our results c~- 
tablish neural network models as providing an alter- 
native framework for studying the theory of the firm 
and of the consumer. 

Approximation of derivative~ at~.~ permit.~ scns~. 
tivity analyses in which the relative effects on outpm 
of small changes m inpm variables m different re~ 
gions of input space can be investigated. Gilstrap and 
Dominy {1989} have proposed such analxses as the 
basis on which network knowledge van be explicated. 

Finally_ we note that an~ network >uitabt~ trained 
to approxtmate a mapping satisI\'ine some nonlinear 
partial differential equations (pdcl ~ill have an ~tlt- 
put function that itself approximately satislies the 
pdc by virtue of its approximation ~,i the mapping',  
derivatives. 

Formall}. our results arc obtained by showing that 
for broad classes of multila~er feedforward net- 
works, the set XL(G} is dense in general spaces o~. 
functions where distance between functions ~s mea- 
sured taking into account differences between the 
derivatives of the functions {including derivati~c~ o{ 
order zero I. 

Because the mathematical bact<ground regarding 
these spaces may be somewhat unfamiliar, we pro- 
vide a .,,ynopsis of the relevant material m section 2. 
Section 3 contains our main rose,Its. Section 4 pro- 
vide.,, a brief discussion on implementation of a teed- 
forward nel that yields the desired derivatives as out- 
puts. together with some briet remarks concerning 
learning of the representations shown here to be pos- 
sible. Section 5 provides a summary and some con- 
cluding remarks. Mathematical proofs are gathered 
into the Mathematical Appendix 

2. BACKGROUND ON FUNCTION SPACES 

This section reviews relevant basIc concepts for the 
theoretical results of the following section. For ad- 
ditional detail, see for example, Adams 11975) and 
Showalter ( 19771. 

We are concerned here with how well the collec- 
tion of network output functions E(G)  can approx- 
imate certain spaces of functions. Given a function 
space, say S. we can measure the distance between 
two elements of S using a metric ~. Formally. p is a 
mapping with the properties: (1) for all f ,  g C S, p(f ,  
g) > -0 : (2 )  f o r f ,  g , h  ~ S. p ( f ,  h) <- p ( f .  g) ~- p(g ,  
h): (3) V([, g) = 0 if and only if t = g. The pair (S, 
p) is called a metric space. To describe the ability of 
the set E(G)  to approximate the space S. the concept 
of p-denseness applies. 

DEFINITION 2.1: Le t  U be a subset  q t  R ' .  let S be a 
collection of . funct ions  f : U --+ R and let p be a metric 
on S. For any g in ~ ( G }  {recall ,,, " W --, R t  define 
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the restriction o f  g to U, &c,, as glt.,(x) = g(x)  )or  x 
in U, giz:(x) unspecif ied f o r  x not  in U. 

Suppose that f o r  an3' f in S and ~ > 0 there exists" 
g in £ ( G )  such that p ( f ,  glc) < e. Then we say that 
E ( G )  contains a subset p-dense in S. I f  in addition 
g~ belongs to S f o r  everv g in ~ ( G ) ,  we say that ~.(G) 
is p-dense in S. 

The first part of this definition allows for the possi- 
bility that E(G)  may contain functions g for which 
g~ does not belong to S. Even so, when E(G)  has 
this denseness property,  it always contains a single 
hidden layer feedforward network output function 
capable of arbitrarily accurate approximation to any 
member  of S in terms of the metric p. 

We shall consider approximating elements of a 
variety of metric spaces (S, p) using feedforward net- 
works. For all of what follows, we let U be an open 
subset of R'. (We could have U -- R' .)  To specify 
the first function space of interest of interest, let 
C(U) be the set of all functions continuous on U. 
Let c~ be an r-tuple c~ - (c~ . . . . .  a,)~ of non- 
negative integers (a "multi- index").  If x belongs to 
R', l e t x " - , r 7  "-r;': • . . . .xT,. Denote by D " t h e  
partial derivative 

iJ '..';~x ... .  ;J"/(OxT~ i~x',': . . . Ox;:,) 

of order lc~ I = cr~ + o~, + ..- + o~,. For nonnegative 
integers m, we define C'"(U) =- { f  C C(U)[D" f  C 
C(U)  for all ~, [a[ _< m} and C"(U)  - n,,, .~C"'(U). 
We let D '' be the identity, so that C"(U) = C(U).  
Thus, the functions in C'"(U) have continuous de- 
rivatives up to order m on U, while the functions in 
C~(U) have continuous derivatives on U of every 
order. 

For these spaces, we adopt the following termi- 
nology. 

DEFINITION 2.2: Let  m,  l ~ {0} U N,  0 <-- m <- l, and 
U C X' be given, and let S C C ( U ) .  Suppose  that 

)br  any f in S, compact  K C U and c > 0 there 
exis'ts g in E(G)  such that max>l .... supxeKID'f(x)  - 
D~g(x)l < ~:. Then we say that E ( G )  is" m-uni formly  
dense on compacta in S. [] 

There are many metrics inducing m-uniform con- 
vergence on compacta.  For example,  see Dugundji 
(1966, p. 172). We denote any such metric p~. This 
metric depends on U, but we suppress this for no- 
tational convenience. 

When £ ( G )  is m-uniformly dense on compacta in 
S, then no matter  how we choose an f i n  S, a compact 
subset K of U, or the accuracy of approximation 
~: > 0, we can always find a single hidden layer feed- 
forward network having output function g (in £ ( G ) )  
with all derivatives of gl~, on K up to order m lying 

within r, of those of f on K. This is a strong and very 
desirable approximation property.  In the next sec- 
tion, we impose conditions on G and U that ensure 
that £ ( G )  is indeed m-uniformly dense on compacta 
in particular useful subsets S of Cm(U). Thus, such 
networks can be used to approximate any unknown 
mapping and its derivatives to any desired degree of 
accuracy in this precise sense. 

Another  useful approach to measuring distances 
between functions taking into account differences be- 
tween derivatives is based on metrics defined for 
collections of functions known as Sobolev spaces. To 
define these spaces, we must first introduce the spaces 
L;,( U, / ; ) .  

For any open subset U o f  R', let ~(U) be the Borel 
a-field generated by the open subsets of U (i.e., .~(U) 
is the smallest collection of subsets of U that contains 
U and all open subsets of U and is closed under 
complements  and countable unions). 

A function f : U ---, R is said to be (Borel)  mea- 
surable if for every open subset A of R, the set Ix C 
UIf(x) ~ A} belongs to ~(U).  Continuous functions 
on U are measurable,  as are piecewise continuous 
functions. Nonmeasurable  functions exist (see, e.g., 
Halmos,  1974, p. 69), but they are pathological, and 
generally not relevant in applications. 

A measure l; assigns a number  in [ll, ~] to every 
set in !,~(U), with / ; (Q)  - 0 and/L(B) = EZIIZ(B,) 
whenever B = n," ~Bi, Bi U B i = Q for a l l i  ¢ j .  
When IL(U) < :% I* is called a finite measure.  An 
important measure is the Lebesgue measure ). on (R', 
!,~(R")). When r = 1, ). measures the length of in- 
tervals B = ( a , b )  a s ; . (B)  = b - a. F o r r  = 2 , 2  
measures the area of rectangles B = (a, b) × (c, d) 
as ;,.(B) = (b - a)(d - c). When r = 3. ,J. measures 
volumes in a similar manner.  Generally (i.e., for all 
r), ). provides a measure of the generalized volume 
of a set. 

The space L¢,(U, IL) is the collection of all mea- 
surable functions f such that fffll,,,,,,,, -= [f~,.lf[ ~' 
d/L]~ ~ , < z ,  I _< p < ~c where the integral is defined 
in the sense of Lebesgue. When l~ = ). we may write 
either fc,fd;', or f J ( x )  dx to denote the same integral. 
We measure the distance between two functions f 
and g belonging to Lp(U, p) in terms of the metric 
P,,.c.'.,,(J, g) = nf - gll~,.c.4,. Two functions that differ 
only on sets of/~-measure zero have P~,.L,.t,(f, g) = O. 
We shall not distinguish between such functions. Thus, 
f E L~,(U, p) represents an equivalence class of func- 
tions, all of which differ from each other only on sets 
of iL-measure zero. Functions in L~,(U, lt) need not 
have derivatives, and the distance measure Pr,.~'.~, takes 
no account of relationships between any derivatives 
that do exist. 

The first Sobolev space we consider is denoted 
SIn'(U, p) ,  defined as the collection of all functions f 
in C'"(U) such that [[D")][,,.c.~, < ~c for all [oe I <- m. 
We define the Sobolev norm ][f]],,,.,,.~.~, C (El,+,,, 



,H~, ~,',,~ . The  Sobolev metric is 

P;;i,,( f .  g)  = I I ]  get .... t. g ~ 3!:'( U. ~1. 

Note  that  p;~'.,, depends  implicitly on U. but we sup- 
press this dependence  for notat ional  convenience  
The  Sobolev metr ic  explicitly takes into account  dis- 
tances be tween  derivatives. Two functions in S;f( U. 
l0  are close in the Sobolev m e m c  p;;',, when all de- 
rivatives of  order  0 -< c~ < m are close in L, m e m c .  

For  many  interesting choices for G. E(g l  need not 
be a subset of  S'~'(U, # ) .  However .  we shall generally 
be able to find H in £ ( G )  such thai for every h m 
~ ( H ) ,  h~u belongs to S.;~,(U, JO and XL(HI is PlI'.~-dense 
in SII'( U,  /2). 

In the next section, we give condit ions on ~;. 
U. and iz ensuring that  single hidden layer feedfor-  
ward networks  can be used to approximate  any un- 
known mapping  and its derivatives to any desired 
degree  of  accuracy in the metric p',l'.,. In particular.  
we take U = W and assume that ,~ is finitc and 
compact ly  suppor ted ,  that  is. there is a compact  sub- 
set K of  W such that l z ( K )  = iz(R'). 

" t ? l  • Next  we consider  the Sobolev space 5~, (lot) de- 
fined as the collection of  all funct ions f in C'"(W/ 
such that  for  every open  bounde d  subset U of  R'  the 

,n [ function f belongs to S,, ( L , ) 3 .  To define a metric 
on this space of  functions,  let U. -= ~x ~ ?,' " ,x 
n . i  = 1 . . . . .  r } a n d p m  

m " E p,,,.~(j, g) ~- 2 " min( f gil . . . . . . . . .  IL  
, I 

f. g ~ S:'(loc) 

Two funct ions in S~f([ocl are close in the metric 
m P~,.~o~ if their derivatives of  orders  0 < ~a~ < m are 

close in L~, metric on open  bounde d  subsets of  X'. 
We give condi t ions  on G ensuring that single hidden 
layer feedforward  net rorks  can be used to approxi-  
mate  any unknown  mapping  and its derivatives to 
any desired degree  of  accuracy in the metric p~;'.~,,~. 

The  spaces S'~"(U,/2)  are limited bv the fact that 
they do not include funct ions that have der ivatwes 
everywhere  except  on sets of  measure  zero (e.g..  
piecewise differentiable functions).  Interestingly,  it 
turns out  to be possible to approximate  such func- 
tions arbitrarily well using multi layer feedforward  
networks.  Howeve r .  in order  to discuss this possi- 
bility precisely,  it is necessary to work  with a gen- 
ralized not ion of  the der ivatwe.  

In order  to provide  the p roper  general izat ion,  wc 
int roduce the concepts  of  d i s t r i b u t i o n s  and d i s t r ibu -  

t i ona l  d e r i v a t i v e s  due to Schwartz {1950}. For  all 
functions f in a b road  class (L~.~o~(U) specified be- 
low), we can associate a specific distr ibution,  differ- 
entiable of  all orders.  W h e n  the funct ion f is differ- 
entiabte,  the distr ibutional  derivatives cor respond  to 
the classical derivatives. However .  even when the 
funct ion f is not  differentiable in the classical sense 

there is often a tunct ion in the original space cor- 
responding to the distributiona~ derwatwe ,  l"h~, 
function is called a " w e a k "  or  ' e e n e r a l i z e d "  d c m  
ative, and provides  the general izat ion ot  the classical 
derivative needed for our discussion of the approx- 
unation capabilities of  multi lavcr fcedforward nc{.- 
works. 

The formal definitions oT , d~stribution ,rod 
us derivatives make use of functums belonging ~o 
('~;(U) -- C ' ( U )  e C,,(U). where ( d U I  is the space 
of  all functions in C(U)  with compact  support .  CThe 
support  o f  f ~ C ( U )  is defined a~ supp t -: clIx ~7 
U • f ( x )  -~- 0}, where cl denotes  {l~e closure of  tile 
indicated set I Funct ions in C,:( ' t /  have continuou~ 
derivatives of  all orders  and compact  support .  

A d i s t r i b u t i o n  o n  U over  ~. is defined as; ~ linea~ 
mapping T " ( ? , { U } - - - ,  E (~.~ :t~&, b o  ~ . 

u7"(a~ I - t~I '(~-.) ,  a. b (E .R o ~ '-;~ (',:~{.}~ W',. 
construct  the distributions used ILc:e m a straigm- 
forward manner .  Let  K be ,J compact  subset of ( 
l.et L , { K .  ).) be the set of  all measurable  functions 
f -  U .... ?, such that .[~ I d,; . The .>pace o.t 
locally mtegrable  functions on t ~, ! ..... (/_.'} 
< {L~(K. ,;.t K C U. K compact ;  For cvcrx ~ m 
I . . . .  U) we define the distribution} I ,  such that 

/Id~, - I to d, -, ~ ({ 

This Is readily verified to be a t incar mapping t rom 
C,~(U)  to R. 

Further .  for any distribution T we m a y  define the 
distributional derivative a"T  such that 

#"Tool  -- I 1Y 'T ( IJ"&t .  • .~ ( ~t/~. 

Consequent ly ,  O"T is also a line~|r mapping  from 
C?,(U)  to R. This definition is constructed so that 
when f belongs to C " ( U ) ,  then ;i"/) - TD,,, for 
c~ ~ m. In this case the distributional derivatwe 

corresponds  precisely to the classical derivative. To 
see this. note that 

;~ l',{O) = ~ ll~'T.(D"a,~ 

l 

I l I)"¢~d~ a ,  

= "l r,,,,.( ¢~ l, o e_ C?;(UL 

The key step is the equality,  which follows f rom in- 
tegrat ion by parts  and the fact that ~ vanishes at  the 
boundary  of  U because  it has compac t  support .  

Even  when the classical derivative does n o t  exist. 
there  may exist an e lement  h of  L L ~ ( U )  such that 
O"T r = Th. In such cases, we write h = O , f a n d  call 
O~f the weak or  general ized der ivat ive of f. ( W h e n  
[ E C m ( U ) ,  a " f  = D e f . )  Showa | te r  (1977. pp. 30 
31) gives numerous  examples  of  [unct ions in L~ ~ ( U )  
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having weak derivatives, but not classical derivatives. 
However,  not all functions in LHo~(U) have weak 
derivatives. Such functions will play no role in what 
follows. 

We now have sufficient background to define the 
Sobolev spaces 

w;:'(U) = { r e  L,,,,.(V)l<fe L,(U, 2,,), 0 <_ I< < m}. 

This is the collection of all functions having gener- 
alized derivatives belonging to L,(U, 2) of order up 
to m. Consequently, W;~,(U) includes S'//(U, 2), as 
well as functions that do not have derivatives in the 
classical sense, such as piecewise differentiable func- 
tions. 

Although it would be possible to define "weighted" 
Sobolev spaces W;7( U, /0 containing S;;'(U, l~) for 
I~ ~ 2 in an obvious way, we leave formal consid- 
eration of these spaces aside in order to avoid certain 
unpleasant technicalities. (See Kufner, 1980, and 
Kufner and Sandig, 1987.) 

The norm on W;','(U) generalizes that on S;7(U, 
2), we write it as 

(': ) . . . .  
i / l , , , , ,  ~ [o-t !r;:,, .f ~ w,,:,(e). 

For the metric on W;I'(U) we suppress the depend- 
ence on U and write 

f,;:'(f, .~) = [If - gll.,,,, L g ~ w ; ( u ) .  

Two functions are close in the Sobolev space IV'/,'(U) 
if all generalized derivatives are close in L,,(U.  )3 
distance. In the next section, we give conditions on 
G and U ensuring that single hidden layer feedfor- 
ward networks are indeed p;~'-dense in IV'/,'(U). Con- 
sequently, single hidden layer feedforward networks 
are capable of approximating an unknown mapping 
and its generalized derivatives to any degree of ac- 
curacy under general conditions, provided that suf- 
ficiently many hidden units are available. 

The conditions to be placed on U are that U is an 
open bounded subset of R' and that the set of re- 
strictions to U of functions in C~(R r) is p;;'-dense in 
W;7(U). This places further restrictions on U that 
have practical consequences for the construction of 
fecdforward networks approximating an unknown 
mapping and its derivatives. The reason for this is 
that when U is such that Ca(R") is not p;~'-dense in 
W;{'(U), then it is easy to construct examples of func- 
tions belonging to W;{'(U) which are impossible to 
approximate arbitrarily well with any feedforward 
network (or indeed with any smooth function). 

For example, take r = 1 and let U = (a, b) U 
( b , c ) , a < b < c , a , b ,  c E R .  Le t f (x )  = O, x E  (a, 
b) and let f ix)  = 1, x E (b, c). N o w f b e l o n g s t o  
C~(U), but no function g in C~(R) (recall that ele- 
ments of £ ( G )  are defined on R) can approximate f 
in SI(U, 2). Because U hies locally on both sides of 

the boundary point b we can have a jump in f with 
no corresponding jump in Dr. No function g in C~(R) 
can exhibit this behavior, even approximately. To 
obtain an artibrarily accurate approximate using only 
one feedforward network is thus impossible. How- 
ever, two networks, one for the region U~ = (a, b) 
and the other for the region U2 = (b, c) can deliver 
the desired approximations. This strategy of parti- 
tioning the domain U and applying a different feed- 
forward net separately to each subdomain satisfying 
our regularity conditions is often feasible. It is im- 
portant in practice to examine the input domain to 
see if this strategy is necessary. 

Necessary and sufficient conditions ensuring that 
U is sufficiently regular that C;(R')  is p'~'-dense in 
W;I'(U) arc not presently known. However,  there are 
a number of useful sufficient conditions available, all 
ruling out the possibility that U lies locally on both 
sides of its boundary. We give two examples: that U 
possess the "'segment property,"  or that U is "star- 
shaped with respect to a point." 

Let U' denote the complement of U in R' and let 
the boundary of U be defined as aU ~ cl U A cl U'. 
The open set U has the segment property if for everv 
x in ('*U there exist a neighborhood of x, denoted N,, 
and a nonzero vector y~ in R' such that if z belongs 
to cl U (~ N,, then the segment z + O',, (I < t < 1 
belongs to U. A domain possessing the segment 
property must have an (r - 1)-dimensional boundary 
and cannot lie locally on both sides of any part of its 
boundary. 

THEOREM 2.1 (Adams, 1975. Theorem 3.18) / f  U 
has the segment properO,, then C,:;:(R') is p;~'-dense in 
W;;'(U) for 1 -<p < zc rn = 0, 1,2 . . . . .  :2 

The domain U is starshaped with respect to a point 
when there exists x in U such that any ray with origin 
x has a unique intersection with the boundary a U. 

THEOREM 2.2 (Maz'ja, 1985, Theorem 1.1.6.1). lJ 
U is a bounded domain starshaped with respect to a 
point, then C;;(R') is" p;;'-dense in W;7(U) for 1 <- p < 
~c m = 0, 1,2 . . . . .  :2 

Our results make fundamental use of one last 
function space, the space C~ (R') of rapidly decreas- 
ing functions in C~(Rr). C~i (R') is defined as the 
set of all functions in C'-(R') such that for multi-in- 
dices a and fl, x/~D~f(x) --> 0 as [xl --~ zc, where 
x/~ -= xt~x~" . . . x~ ~' and Ix[ -= max1. i-, [&[. Note that 
ci~(R' )  c c~i (R,) .  

To summarize, the spaces of functions within 
which we study the approximation capabilities of 
multilayer feedforward networks are: (1) C ~. (Rr); (2) 
S;~'(U, p) (functions in C"(U) having derivatives up 
to order m being L,(U,/0-integrable) for particular 
choices of U and Is; (3) S;7(1oc) (functions in C'"(R') 
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with derivatives up to order  m being L~(U, zl-in- 
tegrable for all bounde d  subsets U of  W); and (4) 
W~'(U) (functions having general ized derivatives up 
to o rder  m being L~,(U, 2} integrable).  Associa ted  
with each of  these spaces is an appropr ia te  m e m o  
measur ing distance be tween funct ions in a way thin 
takes into account  the closeness of  derivatives of  up 
to a specified order .  Thus  we consider the metric 
spaces (C'~(Rr), p~) ,  (S,?(U, /l), 1)2,)- (S::'(loc}. 

n l  m t~l P~,.~,,o), and ( W , , ( U ) ,  pp L We seek condit ions on (; 
and U ensuring that mult i layer feedforward  networks  
have approximat ion  capabilities (i.e.. a denseness 
proper ty)  in these spaces. For  the case of  W'2(U) ,  

the restrictions on U have practical consequences  for 
the possibility of  approximat ion  bv multi laver feed- 
forward networks.  

3. MAIN RESULTS 

All our  results flow straightforwardly from our  first 
result. We make  use of  a Fourier  integral represen- 
tation for single hidden layer feedforward  networks  
with a con t inuum of hidden units p roposed  by lrie 
and Miyake (1988~. 

THEOREM 3.1 Let  G ~ ~ belong to S'," (R, h) lot  

some  integer m >>- U. Then E( G} is m-un i fo rmly  dense 

on compacta  in ('~ (R').  

Thus.  as long as the hidden layer activation function 
G belongs to S7'(R, 2J and does not vanish every- 
where,  then E(G} can approximate  any function be-- 
longing to C~(R") and its derivatives up to order  m 
arbitrarily well on compac t  sets. 

The conclusion of this result is in fact strong enough 
to deliver all desired corollaries regarding approx> 
mat ion in the spaces S:~(U, I0 ,  S'2(loc), and W~'I U). 
This follows, roughly speaking,  f rom the denseness 
of  C] (W) in these spaces. However .  the condit ion 
that G belong to S~"(R. )3 is uncomfor tab ly  strong. 
In particular,  this condit ion rules out  the familiar 
logistic or  hyperbol ic  tangent  squashing functions be- 
cause these are not even members  of  g~(R, ).). In- 
deed.  no sigmoid choice for G is al lowed by the 
present  condit ion.  For tunate ly ,  the condit ions on G 
can be considerably weakened .  We use the following 
definition. 

DEFINITION 3.2. Let  I ~ {0} U N be given. G is I. 

f ini te i f  G ~ C'(R) and 0 < J D'GI dR < ~.  

The practical significance of  G being /-finite is es- 
tablished by the following lemma.  

LEMMA 3.3. I f  G is l-finite then f o r  all 0 <- m < I 
there exists H ~ ST'(R. X), H V= 0. such that Z ( H )  C 

"£(G}. [] 

h. t tormk, M. Stitu;,<~)~,ib~. atM tt. Whi~c 

Consequent ly ,  it wilt suffice in 'Hworem 3. I tha| ~.; 
be l-finite. It follows that £ (G} contains a subset 
namely "Y.(H), m-uni formly  dense o~1 compac ta  m 
('~ (Rq for I~ < m .-<- 1. 

From this all our  desired corollarms ~ollow. Betorc  
stating them. however .  ~t is uscfui ,,o examine ~he 
content  of  the condi t ion that (7 be [ finitc. First note 
that the logisnc and hyperbol ic  t angcm squashers arc 
/-finite for any I C ?q. so that these familiar hiddclt 
laver activation functions arc covc~cd by our  t h c o  
reins. Next. note that il we ha~c already thai G ~.: 
S',"(g.. ,;t then for ] "= k -2 m i~ Iotlow.~ that f l)~(,: 
d/. - ~l{a consequence  of  the fundamenta l  theorem 
ol calculusl. More eenerallv. ~ {, r (... ,(~ } and .a 
[Y(;] d) ~: v then f D ~' ' ( ;  d, f.i. whtlc il 

l ) "  ( ;  d/. exist.,, ztnd is not equal u', ,c~o then J l y f ;  
d)  ,-. To summarize ,  l-finitc activation functions 
(;  with f t)~(; d). =- U have J' lY {.; ~.e/ -c I o r  :-t]{ 
m - [. and R~r m -- l al l /-f inite aclivation functions 
(; have t I)'"(; (1/ = II {provided l~'"(; exists}. 

It ~s informative to examine c,,sc~ not satisfying 
the condit ions ot the theorems Ft, r cxampte,  it 
G : sin then ( ; C  ( ' r X , .  bu l t , , ,  -,i!/ f l ) ' ( ;  d/  

~-. If (;  is a polynomial  of  degree m lhcn again G G 
( '  (R~. but for l "--- m we have I i l l ;  de ,~l- 
though J D'(;  dz  --- 0 for ? o, ~ Consequent ly .  
neither t r igonometr ic  functions no~ polynomials  arc 
/-finite: the approximat ion  results obta ined here lot 
/-finite activation functions thus have a character  di~- 
tinct f rom Fourier  analysis ~e.g.. E d m u n d s  and Mos- 
catetli. 19771 and Nachbin ' s  extension ot the Stone-- 
Weierstrass theorem (Llavona.  1079 

From T h e o r e m  3.1 and 1.,emma 3.3 we obtain the 
following corollaries. 

COROLLAR'~ 3.4. ( f  G is l-Jinite, then for all ~l -- 
m ~ l. ~((;~ is m-un i fo rmly  dens< on compacta m 
( "  (R'l .  

Let U be an open  subset of  R' and let (? '  C C""[ UI .  
By Corol lary  3.4 we know that if G is /-f ini te  then 
Z(G} is p~-dense in C ] ( R ' I  for any compact  set K. 
From this it follows that if the set oI  restrictions of  

m , ~  " elements  of  Q [Rq to U is pK-den, e m C* then ~2(G) 
is p~-dense in C*. The next corollary is an application 
of  this technique.  There  are man~ others .  

COROLLARY 3.5. I f  G is l-finite, t! ~ m ~ I. and U 
is an open subset  o f  W then £ t  G)  is m - u n i f o r m l y  dense 

m on compacta  tn S ~ ( U .  h) for 1 ~ p < ~ ~ 

COROLLARY 3.0. I f  G is tq~nite and 1~ is compact ly  
suppor ted ,  then f o r  all 0 <- m ~; {. ~ { G I  C S~5'(R r. lt) 

. . . .  S "  R' "," and ~ ( G )  is p , , , -dense in ~,( . #~. ! 

COROLLARY 3.7. I f  G is l-finite, then ~br all 0 :z. 
i n  " m nj m ~ I. Y,(G) is pt,.io,-dense m S_[I tc ) .  
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COROLLARY 3.8. I f  G is l-finite, 0 ~ m <- 1, U is an 
open bounded  subset o f  R r and C~(R ~) is p~'-dense in 
W~I'(U) then Y,(G) is also p~'-dense in W~'(U). 

Theorems 2.1 and 2.2 can be applied to provide con- 
ditions on U ensuring that C~(R r) is p~'-dense as re- 
quired. 

These results rigorously establish that sufficiently 
complex multilayer feedforward networks with as few 
as a single hidden layer are capable of arbitrarily 
accurate approximation to an unknown mapping and 
its (generalized) derivatives in a variety of precise 
senses. The conditions imposed on G are relatively 
mild: the conditions required of U have practical 
implications. 

The fact that ~(G) is m-uniformly dense on com- 
pacta in C~(R') (hence Ci~(Rr)) has further conse- 
quences that we now note, but do not elaborate on. 
Specifically, it follows from Theorem 7.40 of Adams 
(1975) that ~(G) contains a subset dense in the frac- 
tional Sobolev space W~;(U) for s = m + a, m C 
~X, II < a < 1, provided there exists a "strong (m + 
1)-extension operator E'" for U. Further, Theorem 
8.28 of Adams (1975) applies to imply that £(G) 
contains a subset dense in Orlicz-Sobolev spaces. 
The reader is referred to Chapters 7 and 8 of Adams 
(1975) for background and details. 

In concluding this section we note that it follows 
trivially that all of the foregoing results hold for multi- 
output networks defined by letting fli be a vector 
rather then a scalar. Also, identical conclusions hold 
for feedforward networks with more than one hidden 
layer under the same conditions on G, by arguments 
analogous to those of HSW (Corollary 2.7). 

4. NETWORK IMPLEMENTATION AND 
SOME REMARKS ON LEARNING 

Figure 1 provides a schematic representation of a 
single hidden layer feedforward network with two 
inputs, two hidden units and one output. We consider 
this architecture for the sake of simplicity and be- 
cause it suffices to illustrate the relevant concepts. 
Figure 2 presents an augmentation of this network 
that possesses additional output nodes on which reg- 
ister the values of the first partial derivatives (with 
respect to inputs xr and x2), denoted gl and g2, of the 
network output function g. The connections of the 
original feedforward network have been drawn in 
dashed lines in Figure 2 to emphasize the additional 
connections required by this augmentation. Two fea- 
tures are noteworthy: (1) the addition of the deriv- 
ative activation elements (to compute D G )  at the 
hidden layer; and (2) the direct "connections" of the 
input to hidden weights 7 to the multiplication ele- 
ments above the hidden layer. 

g 

Xl Y~I Y2~ )'12 ~'22 X2 

FIGURE 1. Feedforward Network. O input unit, @ multipli- 
cation unit, GO activation unit, @ addition unit. Note: biases 
not shown. 

The treatment of network connection strengths as 
"inputs" in these figures is motivated in part by a 
desire to make clear the nature of the relation be- 
tween the original network and its augmentation. 
However, it turns out that practical implementations 
of the augmented network may benefit from pre- 
cisely this sort of architecture. The reason is that 
weights obtained from any suitable learning proce- 
dure can be loaded directly into this network for use 
in applications. 

Learning procedures delivering connection 
strengths implementing the approximations shown 
here to be possible are obtainable from results of 
Gallant (1987); see Gallant and White (1989) for 
details. 

5. SUMMARY AND CONCLUDING 
REMARKS 

Multilayer feedforward networks with as few as a 
single hidden layer and an appropriately smooth hid- 
den layer activation function are capable of arbi- 
trarily accurate approximation to an arbitrary func- 
tion and its derivatives. In fact, these networks can 

gl g2 
z 

DG ~DG 

"'O 

FIGURE 2. Oerivative network. O input unit, @ multiplication 
unit, GO activation unit, @ addition unit, DGO activation 
derivative unit. Note: Biases not shown. 
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approximate functions that are not different}able m 
the classical sense, but possess only a generalized 
derivative, as is the case for certain piecewise dif- 
ferent}able functions. These approximation results 
provide a previously missing theoretical justification 
for the use of multilayer feedforward networks m 
applications requiring approximation of a funcliot~ 
and its derivatives. 
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MATHEMATICAL APPENDIX 

hi the prool o{ 1 heorem 3.1 we .',hall ma,~,c ttsc ol Fourier irans- 
form~ and some of their propcrucs An excellent cxposmon o~ 
these techniques i'~ given by Dvm and McKcan i1972t. Most ,,~ 
their theorems deal onB with tt~c 3mvarlatc case explicitly: how- 
ever. cxtensums ro the multivariate case :~rt- ~tratghtforward. 

[,ct f b e l o n g ~ o  ( ( R ' I .  The F o u r i e r  t r , m ~ l o r m  ~ • , w~th 

I {It t ? J [ ~. I d ~  :: 

maps (  IP . ' lon to(  (}~.l.(SeeChapter2.~ m DvmandMcKean ,  
1972.~ I~ particular for all multi-indite, ,-~. ~, th D"t and [ ) ' f  th~ 
F o u r i e r  l r a n s l o r m  o I D " {  ) a r e  m 1. (~ ~ l n t c e r a t i o n  b~ t3ares t a x e s  

[)q~a) (2.~ia)'~l 

a n d .  b.v t h e  F o t n i c l -  i n v e r s i o n  t l l C O l C m  

l ,~ l [ : l )  ] c ' - "  [ )  J Id t , :~ t ,  

Similarly. a~ L ) ' ( ,  t -  l .  l l~ )  ~or ,~ *.~ . . . .  ~laV l~lke i - 'uur ic l  

t r a n s f o r m s  

and again. 

D " ( ; I b ) -  (2:rth]~()(t~! 

In particular, it we had G(b~ - u for all h then GIbl ~ u by the 
umqueness theorem. This is ruled out by assumption in Theorem 
3.1 Thus. bv continuiw of G, we can always find-h ~ 0 such that 
(S(b) ~ O. 
Proof of  Theorem 3.1. The proof is accomplished in tour step~ 

Step 1: Let f G C.(W) and fix b ~ 0 such that G ( b )  ~ o. 
Then 

D"t(xt  - j . . [  a,,D,*G(a,x ulK~(a, O} da dO, 

where 

= ~ I - i b ! ' ) ' ( b a ) c - "  I 
Kda. u) Ke [ ~th~ ' [ . 
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Prool. We have, using Fubini 's  Theorem.  

]hL~ (ba)e ....... 
J, ] a"D"G{a'x - O) (d(b) dO da 

=: +[a"lb"l'("a)(;(~)[£D"(;(a'x o),, ....... dO] d. 

= [a'tbl'£O,a+ [ [  ...... ......... dp]  do 

= ii . , ,+ i , i+ .  (;(b) D"G(b)e :',''''l' da 

= j a"lh,'.( ha)(ezrib)"e'- ........ da 

= [[ ,2= . , , , l '~ f~ ,a ) ,  ........... I~!' a .  

: D"l(x).  

whence Step 1 by taking real parts.  
Step 2: Let K be a compact  subset  of R'. ,~- = ,,,(K) - sup{]x]. 

x ~ K } <  :c and let 7 = ¢ , r  + 1. Put 

t,,(x) = £ j[ G(a£v-#)K~,(a,  0)da dO, M ~ N .  
, w , ~l 

Then for all a such that ]a I ~_ m, 

l ) ' . f  , .,,) = ] a"D'G(a~X O)KAa, O) da dO, 

and. as , 9 / - ~  ~c D " I ' ~  ~ D " J  u n i f o r m l y  on K. 
Proo/~ The formula for D"f~, is obtained by differcntiating the 
representat ion of .f,, with respect to x under  the integral sign. Now 

D+'J Lv) T M  D"/ ~( .r)= j[, ~ £ a"D"G(azx - O)K~,(a, #) da dO 

+ j[ f a "D 'G(a ' x -O)K , , ( a .  ,))da d,,. 
, $! , ~I 

Combining both inequalities, we obtain 

1 
sup I D ' J ( x )  - D " f , , ( x ) l  < 
,:~ ' Id;(b)l Ihl' 

( '(;  ...... Ii +*°""° + '"* £ X , , i ,  rD'(;U,)P du ) 

which tends to 0 as M --, :c by integrability of a ' . i  and l)"(;.  
Step 3: For  fixed M, consider the following Riemann sum 

approximat ions  to ]~. Let 

T~ = {v = (r, . . . . . .  v.j: v, is integer and 

N ± I' <: N , i  = [) . . . . .  r }  

and 

S , , f l x  = ~ # , , ~  ( ; ( a ( , ,  a 0 . . . .  ) E E ' ( G ) ,  

with a+,~. (v: . . . . .  r.)~M/N, tt~, ~. :- r,,)'M.'N, fl,,~, 7(M/ 
, ~ / ) , '  I K,,(au ~ .. Ou,,,). Thcn lot all a such that :-I "- m, as N - - ,  
x. D"S~1\.J ~ D'[f, uniformly on K. 
l'ro~{l: Introduce thc nota tkms 

tt,(.r, a, a) = a"D '(;(ub, H)KJa,  (I), 
B u ~ .  :- {(a. 0): v , " ~ l , ' , V ' -  t) -~-: (v,, + 1 )?M, 'N :  

v M ' N  ~ a < (v. + I ) M / N . I  = 1 . . . . .  r } .  

O b s e r v c t h a t [ T d  = # v i n  7~ = (2~/)' : and that 

L; /3 . . . .  = {(,. 0): a C [ - M .  M]', U 
, I  x 

! +,, 

:,M, :,,WlL 

da ,la = ),(M:N)" 

It follows that 

/ ) ' S ,  ~.I(.v) = V 7(M..N),+,a.; , , ,  
I \  

x D"G(a( I ,  .v #u, , )K: , (at , , ,  Ou~.) 

= S [ H . ( . , . a  . . . .  ,, . . . .  )da dO 
' Ix + ~ t \  , 

The absolutc value of the first integral is less than or equal to 

f,, [ j[ JD"G(a'X -- O)ldO] Ibj'[a''j` (ba)l 
,r iO(b)l  da 

[l/bar']/b.ll] F D ' G i [ I  d(ba) 

lID" GJl ..... ( 
la ' j (a)]  IOCb)l [hi+, J, ...... da. 

To obtain an upper  bound  for the second integral, notice that if 
lal ~ M,  x e K,  and ]O I > , ,M, we have  la+xJ < K r M  and thus 

I . ' *  - 0t ~ / ! 0 1  - t . ' x l l  > : ,M - ~rM = M. 

It follows that, for x E K, the absolute value of the second integral 
is less than 

£ If, ,++++,+,'+-,,,d ''++'°+*+++ . . . .  le,(+)l da 

< Ila"]lh ..... £ 
I ~ - ~ - "  , +, ID'+GCu)I du. 

a n d  t h a t  

D " , , ( x )  : ~ [- H.(x .a .O)  dad,L 
' I x +  J!~ l \ 

For all [a+ -< m. the map  (a, x, #) --, ILL++ a, 0) is cont inuous and 
therefore unilormly cont inuous for (.~. a. 18 E K × [ M, 
M]' x [ - i ' M ,  7M]. In particular.  

(,),,~(+5) = sup tlH.(x, a, a) - H,,(r, h, (/1: 
,, m i ~: h 

a.  r,. E [ - M .  MI ' ,  I" ap < (~: a .  (i 

+ [ -  ; m +~` :'+++ l. [ + -- +)l (+ + '++ t 

tends to 0 as +5 ---, 0. Hence,  for all x C K. 

[D+'f,,(x) D"S+,, .1 (x)[ 

/ [H,Lr. a. O) - H . ( x .  el . . . . .  (h, ,,)i da dO E 
, , ~ l ~  +11¢ ! \ 

. ~  1+ 69 . . . .  ~ I / ' N )  du dO 
,~u I k J f  s t  \ 

(:).,t g( M / N)(2 N y '7( M / N) '+: 
)'(2M)'+tcu:~,,,(M/N) 
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and therefore  

sup ]D"f~(x~ - D~SM.NfIx] < 

i '(2M) ~'~ e)~,~(M/N ~ II as N - ,  • 

Step 4: The result  follows f rom Steps 2 and 3. first taking 
N ---, ~ and then M --, ce. [] 

Proo f  o f  L e m m a  3,3. Fo r  any funct ion f mapp ing  R to R and any 
n > 0. define a new funct ion f rom R to R. the n-shifted difference 
of  f ,  ~"( f ), recursively as follows. Fo r  all x ~ R A0(f)(x)  = f (x) .  
and for all n - 1 and all x ~ R A" ( f ) (x )  = A"-~( f ) fx  -~ a) 
A"-~(f ) (x)  where  a > 0 is some  fixed real number .  The p roof  will 
consist  of  showing that  if G is/-f ini te  then N ( G )  ~ 0 and belongs 
to ST'(R, 2) for  all 0 -< m < /. 

We first record some  useful proper t ies  of N ' ( f l :  I l l  For  
all n > 0. A " ( f )  ~ £ ( f ) ;  (2) If f ~ C*(RI then for all n > 0. 
A" ( f )  ~ O ( R ) ;  (3) If f ~ CqRI and 0 ~ m < 1. then for all 
n - 0. A"(Dmf) = D~A"( f ) .  

We now proceed  to the proof.  W h e n  I = 0 the result  is trivial 
Fo r  I > 1 we show that if G is /-f ini te  then  &~(G) is (l - 1 )-finite 
(i .e. ,  0 < f IN(D'-~G).  d2 < ~l .  

By assumpt ion  0 < f ID~Gt d2 < :~. For  x ~ R let D~G + (x ~ = 
max(D~G(x),  0) and D~G- Ix) = - min( /YG(x) ,  0) so that D~G = 
D;G ~ - D~G . Fur ther .  let M+(x) = f ~  D~G+(t) dt and M 
(x) = f~_ ~ D~G (t) dr. M + and M -  are cont inuous ,  nondecreas ing  
funct ions bounded  above by f D~G + d2 and f D~G d2. Bv 
the fundamenta l  t heo rem of calculus. D~-~G(xl = M+(x) - 
M - l x )  + k for some constant  k. Thus .  N ( D  ~ ~G) = M+[t 
a) - M*(t)  - ( M - ( t  - a) - M - ( t ) ) ,  so [At(D ' 'G)] ~ (M*(t  - 
al - M+(t)) - ( M - ( t  - al - M- ( t ) ) .  Integrat ing,  we obtain 

A t ( D ' - ' G )  dl  <-a D 'G ~ d2 - [ D 'G d). - a I D'GI. 

where  the inequali ty follows f rom Billingsley 11979, Ex. 18.1t/, p. 
2057. Thus, f|A~(D'-~G)] d2 < oc. All that  is left is to show thal 
0 < f IN(D'-~G)I  d,i. I f  f IA ' fD ' - 'G)I  d,t = 0 then A ' ( D ' - ' G )  
(x) = 0 for all x ~ R But this implies that D'  ~G is periodic 
with per iod  a. which in turn implies that  D'-~G = 0. contradict- 
ing the assumpt ion  that G is/-f ini te .  

Inductive applicat ion of  this a rgumen t  shows that 0 < f JA~(G/ 
d2 < ~.  This  implies that  f D~A~(G) d2 = 0 for 1 -< m -< 1, proving 
that N ( G )  ~ ST'(R, 2L [] 

Proo f  o f  Corollary 3.4. By L e m m a  3.3 there is an H in ~ t G )  
satisfying the assumpt ions  of  T h e o r e m  3.1. P- 

The p roof  o f  Corol lary 3.5 uses the following temma,  which 
closely resembles  the Arze la -Asco l i  t heo rem (e.g. .  Dugundj i ,  
1966, T h e o r e m  XII .  6.4). The Arze la -Asco l i  theorem would  allow 
us to prove  that pointwise convergence ~mplies uni form conver-  
gence on  compacta .  O u r  L e m m a  establ ishes that a lmost  every- 
where-2  convergence ,  general ly not  a topological  concept ,  implies 
uni form convergence  on  compacta  

LEMMA A.1.  Let U be a nonempty  open subset o f W .  I f  lJ~: U 
R}/s  equicontinuous on every compact  subset o f  U and f ,  ~ f a.e.- 
)~. f ~ C(U) ,  then f ,  --~ f uniformly on compact subsets o f  U. c 

Proof. Pick arbi t rary compact  K C U and e > 0. We show 
that there  exists N ~ N such that for all n - N max,e,~ f , ( x )  
f(x)l  < 

Ix. H o r n i k .  M.  S t i n c h c o m b e .  a n a  I t .  Whi t e  

Let A = ix ~ U f , , ( x l ~ ) ( x ) L  B e c a u ~ t j ,  - ~ .. . . .  -~.. 4 ,~ 
dense in U. For  any q > 0. let K ~ {x ~ W' ~x - y < ~ tot some 

~ K}. Because K is compact  and U is open  there exists V " " 
such that the compact  set cl Ka, is a subset  of  U_ Pick such an ,: 
Because {f,} is equicont inuous  on cl K hence K .rod ,~ 
cont inuous ,  there exists ,~ -- ~ such t h a  

xupe< . sup , .  _~_, at ~ ' ~g ) )' 

Because K.. is open  and A is dense m 6 .  mc collection ot s e b  
{B(x. 61 N Ke°lx ff K. c-~ A} ~s an open  cover of  cl K.. where  B(x. 
fi) ~ /Y ~ R* ) xl < 6}. Let {B(r., A)D K,,,},~, be a finite 
subcovcr .  Because x ~ A.  we can pick N sufficiently large that 
for a l l n  > N . f , ( x 3  f (x3  " e/3. Forcverv ,C- -  l w c h a v e  

s u p , ,  /~,, . . ,  x:,, I,,t..~) / ' I x )  .'2--. s u p ~  , ~ , . ,  ~ .  ~ I v }  ~A_/:~ 

'!,,(&) tlX.l - I~_~1 fl~CL < q': '31 

lot all n ~ N. Because K C~,~.AB(x.. o: h:..~, the result fol- 
lows. D 

Proof  o] Corollary 3.5. It suffices to show t llat the set ot  restric- 
tions of  Q ( W )  to U is p~-dense in S2(U.  )3. Let K b e  a compact  
subset  of U and g an arbi trary e lement  of S~'(U, 21. Again,  put  
K. = {x E R' x - Yl < q for  some  v ~ K ,. Because K is compact  
and U is open.  K C K, C Kz,, C U for all n "> 0 sufficiently small. 
Pick such an q and let ¢ E C~tRq satisfy 0 ~ d) ~ l. @lxl = 1 it 

E K,, and O(x) ~ 0 if x ~ K,_,. Then  h ~= o e belongs to C~(Rq 
and h(x} = g(x) for x E K,,. 

For  ~. > 0. set W / x l  = exp(!x[: - ,'~ if 7.~ "- c and ~P'(x~ 
n i f , x ~ > c .  Define~u = ( f ~ ' d 2 )  ~ ¢ a n d s e t h ' ( x l  = f h ( x  
y ) ¢ I y )  dy. By the boundedness  of  K2,, and Maz ' ja  11985. 1.1.5. 
11-31, pp.  1 1 - 1 2 / h  ' ~ C~,,(W) and p;",(h'., h', --* 0 as ,: --,  l). Taking 
subsequences  if neeessarv,  we have for all ,t~ 5-. m that D#* ~ -+ 
D°h a.e.-2 on K.. 

It ts easy to check that for a l l ,  - ~ wc Ilave that lor all t,~ -. 
m a n d a l l 6  >{~ 

s u p ,  '~-h., , D"h~(x) - D"h'(  v 

~ sup , . .  ~ D"h{x) D'h t  vl.. 

Because h vanishes outside of K2,,, this imphes  that t D  • hq is an 
equicont inuous  family of funct ions on K,~. l , emma A.1 thus ap- 
plies, and the result follows. 

Proof  o f  Corollary 3.6. Because u has compact  suppor t  K. STIR'. 
~) = Cm(R~). Thus  ~,(G) C Ct(Rq c ( " l R ' /  =- S~(W, it). 

Let U be a b o u n d ed  open  set containing K. Let C'(fff)  denote  
the set of  restrictions of funct ions in Cm(R3 to U. Now C"(U)  C 
S'7( U. 2), so Corol lary 3.5 impl ies tha t  £ ( G )  is m-uni formly  dense 
on  compact  subsets  of U in Cm(U). In particular,  every element  
of S~R ' ,  l~) can be m-uni formly  approx imated  on  K = s u p p  u 

Proof  o f  Corollary 3.7. This follows f rom the definition of  p;7~,~ 
and Corollary 3.6 - 

Proo] o f  Corollary 3.8. Because G~(R') -- C i (R ' )  and C,~(R') is 
p~"-dense in W~'(U), it is sufficient to  show that  £ ( G ) i s  p2-dense 
in C) (W). Because U is bounded ,  e l (U)  is compact .  By Corol lary 
3.4. ~ ( G )  is m-uni formly  dense  on  compacta  in C]~ (W). In  par- 
ticular, for every f ~ Q ( R ' )  and for every e > 0. there  is a g 
£(G)  such that max  . . . .  supx~c, [Df f (x )  - D"g(x) I < e. Thus  p y( f ,  
glv) <- E,a,l~m ( [e l  p " 2 ( O ) )  TM <~ . ~ ( U ) ] I P ( m  ~ 1 ) r e .  Because c is ar- .  

bitrary,  the p r o o f  is complete,  z 


