


Another View of ROS

Plumbing

• Device Drivers

• Inter-Node Communication

• Process Management

Tools

• Visualization

• Simulation

• Debugging

• User Interface

Robot Capabilities & 

Functions

• Robot Control

• Motion Planning

• Mapping

• Localization 

• Perception 

• Manipulation

Community 

EcoSystem

• Package Organization

• Repositories

• Tutorials

• Documentation

• FAQ/Forum

• Workshops/Training



Many ROS Tools

Developer Tools:
• Building ROS nodes: catkin_make

• Running ROS nodes: rosrun, roslaunch

• Viewing network topology: rqt_graph

Debugging Tools:
• Rostopic: display info about active topics 

(publishers, subscribers, data rates and content)

• rostopic echo [topic name]   (prints topic data)

• rostopic list (prints list of active topics)

• Rqt_plot: plots topic data

• Data logging:

• Rosbag record [topics] –o < output_file>

• Data playback:

• Rosbag play <input_file> --clock



Many ROS Tools

Visualization Tools: RVIZ
• Sensor and robot state data 

• Coordinate frames

• Maps, built or in process 

• Visual 3D debugging markers 

Simulation Tools:
• Gazebo: started as grad student project at USC

• Can model and simulate motions/dynamics of 

different robots

• Can simulate sensory views

• Can build different environments

• Can run simulation from ROS code for testing



move_base is a package that implements an action in ROS.  

• An action can be preempted 

• An action can provide periodic feedback on its execution

move_base is a node that moves a robot (the “base”) to a goal

• It links a global and local planner with sensory data and maps that are being built, so 

that the navigation stack can guide the robot to a goal, and have recovery strategies

A first look at move_base



Download ROS distribution.  

• Choose how you want to manage Ubuntu on your machine:

• Dual boot

• Virtual machine: (one option is the free virtual box: https://itsfoss.com/install-linux-

in-virtualbox/ )

• Try the Windows installation?

• Install ROS (melodic is best, but kinetic might be okay)

GO through the first 2-3 steps of the Core ROS Tutorial at the beginner’s level.

• You may prefer to start the first few steps of “A Guided Journey to the Use of ROS”

Goals for Next Week

https://itsfoss.com/install-linux-in-virtualbox/




Gmapping

Occupancy Grid: “map” is a grid of “cells”:  {𝑥𝑖,𝑗
𝑚}

• 𝑥𝑖,𝑗
𝑚 = 0 if cell (i,j) is empty; 𝑥𝑖,𝑗

𝑚 = 1 if cell (i,j) is occupied

• 𝑝 𝑥𝑘+1
𝑟 , {x𝑖,𝑗

m }𝑘+1 x1:𝑘
r , {xi,j

m}𝑘 , y1:𝑘+1 (estimate cell occupancy probability)

Gmapping:

• Uses a Rao-Blackwellized particle filter for estimator

• Actually computes 𝑝 𝑥1:𝑇
𝑟 , {𝑥𝑖,𝑗

𝑚} x1:𝑘
r , xk

m, y1:𝑘+1



Autonomy (a self-governing system):

– Make Decisions and Plans, in the presence of uncertainty

• Process and measurement noise

• Incomplete models

• Incomplete information

• Adversarial conditions

– With little or no human guidance

Some key issues

– Where am I?  ⇒ SLAM

– Action selection  

• Control in Markov Decision Processes (MDPs) and POMPDs

– Planning

– Supervisory Control

Control & Planning for MDPs POMDPS



Given 𝑥𝑘+1 = 𝑓 𝑥𝑘 , 𝑢𝑘 + 𝜂𝑘:

– State Feedback (assumes that all states are “observable”): 

• 𝑢𝑘 = 𝑔 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑢1, … , 𝑢𝑘−1

– Output Feedback: 𝑦𝑘 = ℎ 𝑥𝑘 + 𝜔_𝑘

• 𝑢𝑘 = 𝑞 𝑦1, … , 𝑦𝑘 , 𝑢1, … , 𝑢𝑘−1

Feedback Aims:

– Given a goal, maximize probability of attaining goal

– If possible, optimize other criteria while achieving goal

• Minimize energy use, or time to goal)

– Avoid problems

• Avoid obstacles, stay away from difficult to traverse or dangerous 

areas

Feedback Control/Action Selection



Motivation: a model for many (but not all) dynamical systems 

that are part of a decision problem

Definition: A Mark Decision Process (MDP) consists of

– A discrete set of states, 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑁}

– A set of possible actions to take in each state:  𝑈 = {𝑢1, … , 𝑢𝑘}

• Set of actions can be state dependent: Ui = U(xi)

Markov Decision Processes (MDPs)



Definition (continued): A Mark Decision Process (MDP) consists of

– A transition function, T, that describes the system “dynamics”

• Deterministic:  𝑇: 𝑆 × 𝑈 → 𝑆

• Stochastic: 𝑇: 𝑆 × 𝑈 → 𝑃𝑟𝑜𝑏(𝑆).  

– I.e., a probability distribution over the next states, condition and the 

current state and action:   𝑝(𝑥′|𝑥, 𝑢)

• The Markov Assumption holds: 

– 𝑝 𝑥𝑘+1 𝑥0, 𝑥1, … , 𝑥𝑘 , 𝑢0, … , 𝑢𝑘 = 𝑝(𝑥𝑘+1|𝑥𝑘 , 𝑢𝑘)

– the prediction of state 𝑥𝑘+1 only depends upon 𝑥𝑘 , 𝑢𝑘, and not 

prior states and controls

– Future system states only depend upon the current state (and 

control), and not on the prior history → memoryless

Markov Decision Processes (MDPs)

Stochastic: Probability pro-

portional to length of arrow
Deterministic:



Definition (continued): A Mark Decision Process (MDP) consists of

– A reward function 𝑟 𝑥, 𝑢 → ℝ

• Reward can incorporate goal information 

𝑟 𝑥, 𝑢 = ቊ
+100 𝑖𝑓 𝑢 𝑙𝑒𝑎𝑑𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑔𝑜𝑎𝑙
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Reward can incorporate costs: 

𝑟(𝑥, 𝑢)= amount of energy to execute action u

𝑟 𝑥, 𝑢 = penalty to be in state 𝑥 (e.g., traversibility analysis)

Markov Decision Processes (MDPs)



Definition: A Control Policy, or Policy, prescribes an action or 

control 

– 𝑢𝑘 = 𝜋(𝑥𝑘) for a fully observable system (MDP)

– 𝑢𝑘 = 𝜋(𝑦1:𝑘 , 𝑢1:𝑘−1) for partially observable system (more later)

– Policy 𝜋 can be deterministic or stochastic

• Deterministic:  𝑢 = 𝜋 𝑥

• Stochastic: 𝜋 𝑢 𝑥 = 𝑃𝑟𝑜𝑏[𝑢𝑡 = 𝑢|𝑠𝑡 = 𝑥]

We want to find a policy that

– Realizes the goal as best as possible

– Considers constraints

– Considers the costs of its actions

Approach: Find 𝜋 𝑥 that maximizes a cumulative reward

Policy



𝑅𝑇 = 𝐸 

𝑖=0

𝑇−1

𝛾𝑖 𝑟(𝑥𝑖 , 𝑢𝑖) 𝑅𝑇
𝜋 = 𝐸 

𝑖=0

𝑇−1

𝛾𝑖 𝑟(𝑥𝑖 , 𝑢𝑖)|𝑢 = 𝜋(𝑥)

𝑇 is the horizon

– 𝑇 = 1: “Greedy”

– 𝑇 is finite: “Finite-Horizon Problem”

– 𝑇 = ∞: “Infinite-Horizon Problem”  (often used when T large)

𝛾 is a discount factor: 𝛾 ∈ [0,1] or discount rate.  

– A reward 𝑛 steps away is discounted by 𝛾𝑛

– Models mortality or impatience: you may die soon

– Models the preference for shorter solutions

– Needed for infinite horizon cumulative reward to be finite

|𝑅∞| ≤ 𝑟𝑚𝑎𝑥 + 𝛾1𝑟𝑚𝑎𝑥 + 𝛾2𝑟𝑚𝑎𝑥 +⋯ =
𝑟𝑚𝑎𝑥

1−𝛾
;      𝑟𝑚𝑎𝑥 = max

𝑥,𝑢
|𝑟 𝑥, 𝑢 |

Cumulative Reward



Let’s first consider a class of problems where the system

dynamics are not important

– the transitions between states are the only costs that matter.

– Said differently, the decision made at each state incurs a cost

– Such problem can be modeled by a graph, G=(V,E) with

weighted edges. I.e., weight 𝑤𝑖,𝑗 is associated to edge, 𝑒𝑖,𝑗

– These problems reduce down to a shortest path problem

Dynamic programming (DP) is a general optimization technique to

solve these sequential decision problems..

It is based on the "principle of optimality"

Dynamic Programming

𝑉1

𝑉3

𝑉2 𝑉4

𝑉5

𝑒1,2

𝑒1,3 𝑒3,5

𝑒4,5𝑒2,3 𝑒3,4𝑒1,5 𝑉1

𝑉3

𝑉2 𝑉4

𝑉5

𝑤1,2

𝑤1,3 𝑤3,5

𝑤4,5𝑤2,3 𝑤3,4𝑤1,5



Illustration of DP by shortest path

problem

Problem : We plan to construct a highway from city A to city K. 

Different construction alternatives and their costs are given in the 

following graph. Determine the highway route with the minimum 

total cost. 
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BELLMAN's principle of optimality

Basic Idea:

– if node C belongs to an optimal path from node A to node B, then

the sub-path from A to C and from C to B are also optimal

– Any sub-path of an optimal path is optimal

A

C
B

optimal optimal

Corollary :

SP(x, y) = min {SP(x, z)   +   l(z, y)  | z : predecessor of y}



Application to Autonomous Planning

Approximate Cellular Decomposition:
• Divide environment (or c-space) into “cells”

• Simple shape

• Easy to move between points in same cell.

• easy to move to adjacent cells

• Adjacency is easy to define

• Cells are disjoint: 𝑐𝑖 ∩ 𝑐𝑗 = ∅,    W = σ𝑖 𝑐𝑖

Cells are labeled as 

• Empty

• Occupied

In known environment: 

• Use geometric model to 

divide into cells & occupancy

In unknown environment: 

• Use occupancy grid SLAM 

(e.g., “gmapping”)



Application to Autonomous Planning

Adjacency Graph
• Node: empty/free cells

• Edges: transitions 

between adjacent free 

cells



Application to Autonomous Planning

Adjacency Graph
• Node: empty/free cells

• Edges: transitions 

between adjacent free 

cells

Shortest Path problem

Minimize 𝑤𝑖1,𝑗1 +⋯+𝑤𝑖𝑝,𝑗𝑝 such that 𝑥𝑠𝑡𝑎𝑟𝑡 ∈ 𝑐𝑖1,𝑗1, 𝑥𝑓𝑖𝑛𝑎𝑙 ∈ 𝑐𝑖𝑝,𝑗𝑝



Recursive Derivation: Step 1

– 𝑇 = 1 (greedy solution):  𝜋1 𝑥 = argmax
𝑢

𝑟(𝑥, 𝑢)

– The value (or cost-to-go) function describes the “value” of the 

cumulative reward when the optimal actions is taken:

𝑉1 𝑥 = max
𝑢

𝑟(𝑥, 𝑢) (= max
𝑢

𝐸[𝑟 𝑥, 𝑢 ], 𝐸 dropped below)

Recursive Derivation: Step 2

– 𝑇 = 2:        𝜋2 𝑥 = argmax
𝑢

𝑟 𝑥, 𝑢 + 𝛾 σ𝑧𝑉1 𝑧 𝑇 𝑧 𝑢, 𝑥

– Value function at 𝑇 = 2

𝑉2 𝑥 = max
𝑢

𝑟 𝑥, 𝑢 + 𝛾

𝑧

𝑉1 𝑧 𝑇 𝑧 𝑢, 𝑥

Finding the Optimal Policy



Recursive Derivation: Step T

– 𝜋𝑇 𝑥 = argmax
𝑢

𝑟 𝑥, 𝑢 + 𝛾 σ𝑧𝑉𝑇−1 𝑧 𝑇 𝑧 𝑢, 𝑥

– 𝑉𝑇 𝑥 = max
𝑢

𝑟 𝑥, 𝑢 + 𝛾 σ𝑧𝑉𝑇−1 𝑧 𝑇 𝑧 𝑢, 𝑥

Infinite Horizon:

– 𝑉∞ 𝑥 = max
𝑢

𝑟 𝑥, 𝑢 + 𝛾 σ𝑧𝑉∞ 𝑧 𝑇 𝑧 𝑢, 𝑥

– The “Bellman Equation”

– The optimal value function is the “fixed point” of this equation.  

This is the basis of “value iteration”

– The optimal policy (at any time)

𝜋∗ 𝑥 = 𝑎𝑟𝑔max
𝑢

𝑟 𝑥, 𝑢 + 𝛾 σ𝑧𝑉∞ 𝑧 𝑇(𝑧|𝑢, 𝑥) =

Finding the Optimal Policy



Application to Autonomous Planning

Adjacency Graph
• Node: empty/free cells

• Edges: transitions 

between adjacent free 

cells

Shortest Path problem

Minimize 𝑤𝑖1,𝑗1 +⋯+𝑤𝑖𝑝,𝑗𝑝 such that 𝑥𝑠𝑡𝑎𝑟𝑡 ∈ 𝑐𝑖1,𝑗1, 𝑥𝑓𝑖𝑛𝑎𝑙 ∈ 𝑐𝑖𝑝,𝑗𝑝
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Graph Search: the A* algorithm

General Graph Search Goal: search the (adjacency) graph for a 

feasible path connecting the start to the goal node(s).

Optimal Search: find the feasible path with the guaranteed lowest 

cost of traversal (the sum of the edge weights along the path)

General Graph Search data structures:

• All states or nodes are labeled unvisited, visited, dead

• Q: a priority queue

• T: a spanning tree or search tree

General Graph Search Algorithm:

• Init:  mark 𝑥𝑖𝑛𝑖𝑡 visited, all other states visited

insert 𝑥𝑖𝑛𝑖𝑡 into Q

insert 𝑥𝑖𝑛𝑖𝑡 into T
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Graph Search: basic algorithm structure

• While Q not empty:  

• 𝑥𝑖 = getFirst(Q)

• If 𝑥𝑗 = 𝑥𝑔𝑜𝑎𝑙,

• Add pointer from 𝑥𝑗 to 𝑥𝑖 in T

• Return Success

• For all 𝑢𝑗 ∈ 𝑈(𝑥𝑖) % get successor nodes

• 𝑥𝑗 = f(uj)

• If 𝑥𝑗 not visited, 

• mark 𝑥𝑗 as visited

• Add pointers from 𝑥𝑗 to 𝑥𝑖 in T

• Insert 𝑥𝑗 into Q

• Else resolve duplicate links (if appropriate)

• Return Failure
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Graph Search: A* algorithm

A* uses additional functions to improve its operation and outcome

• 𝑔(𝑥): cost-to-arrive.  

• The total edge cost from the start node to the current node 𝑥
along an optimal path

• ℎ 𝑥 : heuristic cost-to-go.  

• An estimate of the cost between current node 𝑥 and 𝑥𝑔𝑜𝑎𝑙
• 𝑘 𝑥, 𝑥′ = distance from node 𝑥 to node 𝑥′

• 𝑓 𝑥 = 𝑔 𝑥 + ℎ 𝑥 : the estimated cost to the goal through 𝑥

Summary of A*:

• getFirst(Q) removes node 𝑥𝑘 from Q with lowest 𝑓 𝑥𝑘
• For each successor node of 𝑥𝑘 (denoted by 𝑥′) removed from Q, 

check to see if going through 𝑥𝑘 is a lower cost way to reach 𝑥′
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Graph Search: A* algorithm

Replace the successor node processing loop with the following

• For each successor node of 𝑥𝑘 (denoted by 𝑥′)
• 𝑔𝑡𝑒𝑠𝑡 𝑥

′ = 𝑔 𝑥 + 𝑘(𝑥, 𝑥′);   𝑓 𝑥′ = 𝑔 𝑥′ + ℎ(𝑥′)
• If 𝑥′ visited, 

• If 𝑔𝑡𝑒𝑠𝑡 𝑥
′ ≤ 𝑔(𝑥′) % found a better path

• Remove existing back-pointer from 𝑥′ in T

• Add back-pointer from 𝑥′ to 𝑥𝑘 in T

• Add 𝑥′ to Q

• Else  discard 𝑥′ (or put 𝑥′ on the CLOSED list)

• Else                                                % 𝑥′ has not been visited

• 𝑔 𝑥′ = 𝑔𝑡𝑒𝑠𝑡 𝑥
′

• Add back-pointer from 𝑥′ to 𝑥𝑘 in T

• Add 𝑥′ to Q





GO through the steps 5, 6, 7, 8 of the Core ROS Tutorial at the beginner’s level.

• You may prefer to the analogous steps in “A Guided Journey to the Use of ROS”

Download, install, move_base

Read about and Install Rviz

Heads-up: need to have visualization of your vehicle in Rviz by the following week.

ROS Goals for Next Week


