Conceptual levels of design

Another View of ROS

Plumbing

- Device Drivers
- Inter-Node Communication
- Process Management

Tools

- Visualization
- Simulation
- Debugging
- User Interface

Robot Capabilities & Functions

- Robot Control
- Motion Planning
- Mapping
- Localization
- Perception
- Manipulation

Community EcoSystem

- Package Organization
- Repositories
- Tutorials
- Documentation
- FAQ/Forum
- Workshops/Training

Many ROS Tools

Developer Tools:

- Building ROS nodes: catkin_make
- Running ROS nodes: rosrun, roslaunch
- Viewing network topology: rqt_graph

Debugging Tools:

- **Rostopic:** display info about active topics (publishers, subscribers, data rates and content)
- rostopic echo [topic name] (prints topic data)
- rostopic list (prints list of active topics)
- **Rqt_plot:** plots topic data

rqt_plot /turtle1/pose/x,/turtle1/pose/y rqt_graph data from 2 topics in 1 plot

- Data logging:
 - Rosbag record [topics] –o < output_file>
- Data playback:
 - Rosbag play <input_file> --clock

Many ROS Tools

Visualization Tools: RVIZ

- Sensor and robot state data
- Coordinate frames
- Maps, built or in process
- Visual 3D debugging markers

Simulation Tools:

- Gazebo: started as grad student project at USC
- Can model and simulate motions/dynamics of different robots
- Can simulate sensory views
- Can build different environments
- Can run simulation from ROS code for testing

A first look at *move_base*

move_base is a *package* that implements an *action* in ROS.

- An action can be *preempted*
- An action can provide periodic feedback on its execution

move_base is a node that *moves* a robot (the "*base*") to a goal

• It links a *global* and *local* planner with sensory data and maps that are being built, so that the *navigation stack* can guide the robot to a goal, and have *recovery strategies*

Goals for Next Week

Download ROS distribution.

- Choose how you want to manage Ubuntu on your machine:
 - Dual boot
 - Virtual machine: (one option is the free *virtual box:* <u>https://itsfoss.com/install-linux-in-virtualbox/</u>)
 - Try the Windows installation?
- Install ROS (melodic is best, but kinetic might be okay)

GO through the first 2-3 steps of the Core ROS Tutorial at the beginner's level.

• You may prefer to start the first few steps of "A Guided Journey to the Use of ROS"

Three Major Map Models

Grid-Based:

Collection of discretized obstacle/free-space pixels

Elfes, Moravec, Thrun, Burgard, Fox, Simmons, Koenig, Konolige, etc.

Feature-Based:

Collection of landmark locations and correlated uncertainty

Smith/Self/Cheeseman, Durrant–Whyte, Leonard, Nebot, Christensen, etc.

Topological:

Collection of nodes and their interconnections

Kuipers/Byun, Chong/Kleeman, Dudek, Choset, Howard, Mataric, etc.

Gmapping

Occupancy Grid: "map" is a grid of "cells": $\{x_{i,j}^m\}$

- $x_{i,j}^m = 0$ if cell (i,j) is empty; $x_{i,j}^m = 1$ if cell (i,j) is occupied
- $p\left(x_{k+1}^r, \{\mathbf{x}_{i,j}^m\}_{k+1} \middle| \mathbf{x}_{1:k}^r, \{\mathbf{x}_{i,j}^m\}_k, \mathbf{y}_{1:k+1}\right)$ (estimate cell occupancy probability)

Gmapping:

- Uses a *Rao-Blackwellized* particle filter for estimator
- Actually computes $p\left(x_{1:T}^r, \{x_{i,j}^m\} \middle| \mathbf{x}_{1:k}^r, \mathbf{x}_k^m, \mathbf{y}_{1:k+1}\right)$

Control & Planning for MDPs POMDPS

Autonomy (a self-governing system):

- Make Decisions and Plans, in the presence of uncertainty
 - Process and measurement noise
 - Incomplete models
 - Incomplete information
 - Adversarial conditions
- With little or no human guidance

Some key issues

- − Where am I? \Rightarrow SLAM
- Action selection
 - Control in Markov Decision Processes (MDPs) and POMPDs
- Planning
- Supervisory Control

Feedback Control/Action Selection

Given $x_{k+1} = f(x_k, u_k) + \eta_k$:

- State Feedback (assumes that all states are "observable"):

•
$$u_k = g(x_1, x_2, ..., x_k, u_1, ..., u_{k-1})$$

- Output Feedback: $y_k = h(x_k) + \omega_k$

•
$$u_k = q(y_1, ..., y_k, u_1, ..., u_{k-1})$$

Feedback Aims:

- Given a goal, maximize probability of attaining goal
- If possible, optimize other criteria while achieving goal
 - Minimize energy use, or time to goal)
- Avoid problems
 - Avoid obstacles, stay away from difficult to traverse or dangerous areas

Markov Decision Processes (MDPs)

Motivation: a model for many (but not all) dynamical systems that are part of a decision problem

Definition: A Mark Decision Process (MDP) consists of

- A discrete set of states, $S = \{x_1, x_2, \dots, x_N\}$
- A set of possible actions to take in each state: $U = \{u_1, ..., u_k\}$
 - Set of actions can be state dependent: $U_i = U(x_i)$

Markov Decision Processes (MDPs)

Definition (continued): A Mark Decision Process (MDP) consists of

- A transition function, T, that describes the system "dynamics"
 - Deterministic: $T: S \times U \rightarrow S$
 - Stochastic: $T: S \times U \rightarrow Prob(S)$.
 - I.e., a probability distribution over the next states, condition and the current state and action: p(x'|x, u)

Stochastic: Probability proportional to length of arrow

- The Markov Assumption holds:
 - $p(x_{k+1}|x_0, x_1, \dots, x_k, u_0, \dots, u_k) = p(x_{k+1}|x_k, u_k)$
 - the prediction of state x_{k+1} only depends upon x_k , u_k , and not prior states and controls
 - Future system states only depend upon the current state (and control), and not on the prior history → memoryless

Markov Decision Processes (MDPs)

Definition (continued): A Mark Decision Process (MDP) consists of

- A reward function $r(x, u) \rightarrow \mathbb{R}$
 - Reward can incorporate goal information

 $r(x,u) = \begin{cases} +100 & if \ u \ leads \ to \ the \ goal \\ -1 & otherwise \end{cases}$

• Reward can incorporate costs:

r(x, u) = amount of energy to execute action u

r(x, u) = penalty to be in state x (e.g., traversibility analysis)

Policy

Definition: A *Control Policy*, or *Policy*, prescribes an *action* or *control*

- $u_k = \pi(x_k)$ for a fully observable system (MDP)
- $u_k = \pi(y_{1:k}, u_{1:k-1})$ for partially observable system (more later)
- Policy π can be deterministic or stochastic
 - Deterministic: $u = \pi(x)$
 - Stochastic: $\pi(u|x) = Prob[u_t = u|s_t = x]$

We want to find a policy that

- Realizes the goal as best as possible
- Considers constraints
- Considers the costs of its actions

Approach: Find $\pi(x)$ that *maximizes* a cumulative reward

Cumulative Reward

$$R_T = E\left[\sum_{i=0}^{T-1} \gamma^i \ r(x_i, u_i)\right] \qquad R_T^{\pi} = E\left[\sum_{i=0}^{T-1} \gamma^i \ r(x_i, u_i) | u = \pi(x)\right]$$

T is the *horizon*

- T = 1: "Greedy"
- T is finite: "Finite-Horizon Problem"
- $T = \infty$: "Infinite-Horizon Problem" (often used when T large)

 γ is a *discount factor:* $\gamma \in [0,1]$ or discount rate.

- A reward *n* steps away is discounted by γ^n
- Models mortality or impatience: you may die soon
- Models the preference for shorter solutions
- Needed for infinite horizon cumulative reward to be finite

$$|R_{\infty}| \le r_{max} + \gamma^{1} r_{max} + \gamma^{2} r_{max} + \dots = \frac{r_{max}}{1 - \gamma}; \qquad r_{max} = \max_{x, u} |r(x, u)|$$

Dynamic Programming

Let's first consider a class of problems where the system dynamics are not important

- the transitions between states are the only costs that matter.
- Said differently, the *decision* made at each state incurs a cost
- Such problem can be modeled by a graph, G=(V,E) with weighted edges. I.e., weight $w_{i,j}$ is associated to edge, $e_{i,j}$

- These problems reduce down to a *shortest path* problem

Dynamic programming (**DP**) is a general optimization technique to solve these *sequential decision* problems..

It is based on the "principle of optimality"

Illustration of DP by shortest path problem

Problem : We plan to construct a highway from city A to city K. Different construction alternatives and their costs are given in the following graph. Determine the highway route with the minimum total cost.

BELLMAN's principle of optimality

Basic Idea:

- if node C belongs to an optimal path from node A to node B, then the sub-path from A to C and from C to B are *also* optimal
- Any sub-path of an optimal path is optimal

Corollary :

 $SP(x, y) = min \{SP(x, z) + l(z, y) | z : predecessor of y\}$

Approximate Cellular Decomposition:

- Divide environment (or c-space) into "cells"
 - Simple shape
 - Easy to move between points in same cell.
 - easy to move to adjacent cells
 - Adjacency is easy to define
 - Cells are disjoint: $c_i \cap c_j = \emptyset$, $W = \sum_i c_i$

Cells are labeled as

- Empty
- Occupied

In known environment:

• Use geometric model to divide into cells & occupancy

In unknown environment:

• Use occupancy grid SLAM (e.g., "gmapping")

100	-								3	-	100					- 3	- 3/	3/			
														î Î							
						1	0	0		•	0	0	0		0	0	0	•	•	•	
222							•	0		•	•	•	0	•	0	0	0	0	0	0	
100				•	•	•	0	0		0	0	0	0	0	0	•	0	•	•	•	
-				•	•	0	0	0		•	•	0	0		0	0	0	•	•	•	
		0	0	•	-					•	•	0	0		0	•	•	0	0	0	
		•	0	•	•	•	•	•		•	•	0	0		•	•	•	•	•	0	
		•	0	•	•	•	0	0	•	•	0	•	0		•	•	0	•	0	0	
		0	0	•	•	0	0	0	•	•	0	•	0				J. J.	J. J			
-		0	0	0	0	0	0	•	0	0	•	•	•	•	0	0	•	•	0	•	<u>155</u>
25	2 (A) (A)	0	0	0	0	•	0	0	0	0	0	•	0	0	0	0	0	0	0	0	
		0	0	0	0	•	0	0								5.5	0	0	0	•	
10 IN	L													- 2	. 3				-		

Adjacency Graph

- Node: empty/free cells
- Edges: transitions between adjacent free cells

Shortest Path problem

Minimize
$$(w_{i_1,j_1} + \dots + w_{i_p,j_p})$$
 such that $x_{start} \in c_{i_1,j_1}, x_{final} \in c_{i_p,j_p}$

Finding the Optimal Policy

Recursive Derivation: Step 1

-
$$T = 1$$
 (greedy solution): $\pi_1(x) = \underset{u}{\operatorname{argmax}} r(x, u)$

 The value (or cost-to-go) function describes the "value" of the cumulative reward when the optimal actions is taken:

$$V_1(x) = \max_u r(x, u)$$
 (= $\max_u E[r(x, u)]$, *E* dropped below)

Recursive Derivation: Step 2

-
$$T = 2$$
: $\pi_2(x) = \underset{u}{\operatorname{argmax}} [r(x, u) + \gamma \sum_z V_1(z)T(z|u, x)]$

- Value function at T = 2

$$V_2(x) = \max_u \left[r(x,u) + \gamma \sum_z V_1(z)T(z|u,x) \right]$$

Finding the Optimal Policy

Recursive Derivation: Step T

$$-\pi_T(x) = \underset{u}{\operatorname{argmax}}[r(x,u) + \gamma \sum_z V_{T-1}(z)T(z|u,x)]$$

 $- V_T(x) = \max_{u} [r(x, u) + \gamma \sum_{z} V_{T-1}(z) T(z|u, x)]$

Infinite Horizon:

$$- V_{\infty}(x) = \max_{u} [r(x, u) + \gamma \sum_{z} V_{\infty}(z) T(z|u, x)]$$

- The "Bellman Equation"
- The optimal value function is the "fixed point" of this equation.
 This is the basis of "value iteration"
- The optimal policy (at any time)

 $\pi^*(x) = \arg \max_{u} [r(x, u) + \gamma \sum_{z} V_{\infty}(z)T(z|u, x)] =$

Shortest Path problem

Minimize
$$(w_{i_1,j_1} + \dots + w_{i_p,j_p})$$
 such that $x_{start} \in c_{i_1,j_1}, x_{final} \in c_{i_p,j_p}$

Graph Search: the A* algorithm

General Graph Search Goal: *search* the (adjacency) graph for a *feasible* path connecting the start to the goal node(s).

Optimal Search: find the feasible path with the guaranteed lowest cost of traversal (the sum of the edge weights along the path)

General Graph Search data structures:

- All states or nodes are labeled unvisited, visited, dead
- **Q:** a priority queue
- T: a spanning tree or search tree

General Graph Search Algorithm:

• Init: mark *x_{init} visited*, all other states visited insert *x_{init}* into **Q** insert *x_{init}* into **T**

Graph Search: basic algorithm structure

- While Q not empty:
 - $x_i = getFirst(\mathbf{Q})$
 - If $x_i = x_{goal}$,
 - Add pointer from x_i to x_i in **T**
 - Return Success
 - For all $u_i \in U(x_i)$ % get successor nodes

- $x_i = f(u_i)$
- If x_i not visited,
 - mark x_i as visited
 - Add pointers from x_i to x_i in **T**
 - Insert x_i into **Q**
- Else resolve duplicate links (if appropriate)
- Return Failure

Graph Search: A* algorithm

A* uses additional functions to improve its operation and outcome

- g(x): cost-to-arrive.
 - The total edge cost from the start node to the current node *x* along an *optimal path*
- h(x): heuristic cost-to-go.
 - An estimate of the cost between current node x and x_{goal}
- k(x, x') = distance from node x to node x'
- f(x) = g(x) + h(x): the estimated cost to the goal through x

Summary of A*:

- *getFirst*(**Q**) removes node x_k from **Q** with lowest $f(x_k)$
- For each successor node of x_k (denoted by x') removed from Q, check to see if going through x_k is a lower cost way to reach x'

Graph Search: A* algorithm

Replace the successor node processing loop with the following

- For each successor node of x_k (denoted by x')
 - $g_{test}(x') = g(x) + k(x, x'); \quad f(x') = g(x') + h(x')$
 - If x' visited,
 - If $g_{test}(x') \le g(x')$ % found a better path
 - Remove existing back-pointer from x' in **T**
 - Add back-pointer from x' to x_k in **T**
 - Add x' to **Q**
 - Else discard x' (or put x' on the CLOSED list)
 - Else

% x' has not been visited

- $g(x') = g_{test}(x')$
- Add back-pointer from x' to x_k in **T**
- Add x' to **Q**

ROS Goals for Next Week

GO through the steps 5, 6, 7, 8 of the Core ROS Tutorial at the beginner's level.

• You may prefer to the analogous steps in "A Guided Journey to the Use of ROS"

Download, install, *move_base*

Read about and Install Rviz

Heads-up: need to have visualization of your vehicle in Rviz by the following week.