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Abstract

Advances in experimental techniques and the ever-increasing fidelity of nu-
merical simulations have led to an abundance of data describing fluid flows.
This review discusses a range of techniques for analyzing such data, with
the aim of extracting simplified models that capture the essential features of
these flows, in order to gain insight into the flow physics, and potentially
identify mechanisms for controlling these flows. We review well-developed
techniques, such as proper orthogonal decomposition and Galerkin projec-
tion, and discuss more recent techniques developed for linear systems, such
as balanced truncation and dynamic mode decomposition (DMD). We then
discuss some of the methods available for nonlinear systems, with particular
attention to the Koopman operator, an infinite-dimensional linear opera-
tor that completely characterizes the dynamics of a nonlinear system and
provides an extension of DMD to nonlinear systems.
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1. INTRODUCTION

Truth . . . is much too complicated to allow anything but approximations.

—John von Neumann (1947)

The field of fluid mechanics is in the enviable position of having a model that apparently de-
scribes the motion of a fluid to near-perfect accuracy: the Navier-Stokes equations. However,
this model turns out to be very complex—even the existence and smoothness of solutions in three
dimensions are not understood, and numerical simulations of turbulent flows challenge our largest
computers.

This review discusses methods for obtaining simplified, approximate models for fluid flows,
either given access to a numerical simulation or given data measured from an experiment. The
goal of these approximate models is to provide insight about the fundamental mechanisms that
describe a particular flow (e.g., a particular instability or energy transfer mechanism). Such a
model is particularly important if one wishes to use flow control to alter the flow in some way: A
suitable model enables the use of many well-developed tools from control theory (e.g., Skogestad
& Postlethwaite 2005).

The field of reduced-order modeling is large, and new techniques are developing rapidly.
Readers are referred to Benner et al. (2015) for a recent review of model reduction methods
for linear systems and to Brunton & Noack (2015) for a comprehensive overview of methods
used for the control of turbulence. Our aim is to review some well-developed techniques, such
as proper orthogonal decomposition (POD; Lumley 1970), as well as more recent techniques,
such as balanced truncation (Moore 1981) and dynamic mode decomposition (DMD; Schmid
2010) and to make comparisons between the various methods. For nonlinear systems, general
techniques are not nearly as well developed as they are for linear systems; still there is progress,
and we describe in some detail a particular recent line of research that makes use of the so-called
Koopman operator (Koopman 1931) to represent a nonlinear system as a higher-dimensional
(often infinite-dimensional) linear system.

The review is organized as follows. Section 2 reviews the fundamentals of projection onto a set
of basis functions, or modes, including POD and Galerkin projection. Section 3 discusses methods
for model reduction for linear systems, including balanced truncation, balanced proper orthogonal
decomposition (BPOD), the eigensystem realization algorithm (ERA), and DMD, and compares
the methods using an example of linearized channel flow. Section 4 presents a few methods deemed
promising for model reduction of nonlinear systems, focusing on methods involving the Koopman
operator, and extensions of DMD to nonlinear systems.

2. MODAL DECOMPOSITIONS

In this review, we focus on model reduction methods that involve decomposing a flow field
into a set of modes. Although we are primarily interested in fluid quantities such as a velocity
field defined everywhere in a spatial domain, here we assume that the quantities of interest at a
particular time t have been discretized, and assembled into a vector x(t), called the state vector.
For instance, x(t) might contain the values of velocity at a set of grid points, or it might contain the
corresponding coefficients of Fourier modes or Chebyshev polynomials. The methods discussed
here apply equally well to any of these situations. In model reduction, we are interested in the case
in which the vector x(t) has a large number of components (e.g., containing values at thousands or
millions of grid or measurement points), and we wish to obtain a lower-dimensional description
of the same flow field.
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Vectors: we use the
convention that
x = (x1, . . . , xn)
denotes a column
vector, with the
corresponding row
vector denoted xT

In order to do this, suppose the state x(t) lies in R
n, so it is a vector with n real components.

Let us consider a (linearly independent) set of modes {v1, . . . , vr }, where v j ∈ R
n. These modes

span an r-dimensional subspace, which we call S, and if x(t) lies in S, then we may write it as a
linear combination of these modes:

x(t) =
r∑

j=1

a j (t)v j . (1)

We can then reconstruct the flow field x(t) just by knowing the r values a1(t), . . . , ar (t); if r is small
compared with n, then this can result in significant computational savings.

It is often convenient to write this expansion in matrix form. Stacking the vectors v j as columns
of a matrix V, and defining the vector a = (a1, . . . , ar ), one may equivalently write Equation 1 as

x(t) = Va(t). (2)

We note that here V is a rectangular matrix, of dimension n × r , with n � r .
Now suppose we know that the state evolves in time, with dynamics given by

d
dt

x(t) = f (x(t)). (3)

(For instance, this equation could be the discretized Navier-Stokes equations.) If x(t) is given by
Equation 1 or 2, then it must lie in the subspace S. However, the right-hand side f (x(t)) might
not lie in S. A natural approach to define dynamics on the subspace is to project the right-hand
side onto the subspace: The vector in S that is closest to f (x) is given by the orthogonal projection
Pf (x), with

P = V(VT V)−1VT , (4)

where VT denotes the transpose of V. If the modes v j are orthonormal, then VT V is the identity,
and the orthogonal projection is simply P = VVT .

However, this is not the only way to project the dynamics onto the subspace S: One may also
choose a nonorthogonal projection (Figure 1). To specify such a projection, we choose another
subspace (of the same dimension as S), spanned by {w1, . . . , wr}. Stacking these vectors as columns
of a matrix W, we may define a projection

P̂ = V(WT V)−1WT . (5)

If the sets {v j } and {w j } form a bi-orthogonal set (i.e., the inner product 〈v j , wk〉 = δ j k), then
WT V is the identity, so the projection becomes P = VWT .

Thus, in general, specifying a projection involves two choices: the subspace S, which is deter-
mined by the set {v1, . . . , vr }, and the direction of the projection P̂, which is determined by the set
{w1, . . . , wr }. Inserting Equation 2 into the projected dynamics ẋ = P̂f (x), assuming the modes
are bi-orthogonal, we obtain

d
dt

a(t) = WT f (Va(t)). (6)

Equation 6 is a reduced-order model of the original dynamics in Equation 3: It consists of r
equations that describe the evolution of a(t), from which we can reconstruct x(t) = Va(t). When
r � n, this can represent a potentially enormous computational savings.

If W = V (i.e., the projection is orthogonal), then this procedure is called Galerkin projection;
if W is different from V, then this is called Petrov-Galerkin projection. For more details, readers
are referred to standard references, such as Antoulas (2005, section 9.1).
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x

span{wj}

S = span{vj}

(P)ˆ

Px
ˆ

(P)

Px

Figure 1
Projection of a vector x onto a subspace S, spanned by vectors {v1, . . . , vr }. The direction of the projection P̂
is specified by vectors {w1, . . . , wr } and differs (in general) from the orthogonal projection P.

2.1. Proper Orthogonal Decomposition

We have not yet specified how to choose the subspace S to be used in constructing the reduced-
order model. One popular method that often works well is POD: In this method, one chooses a
subspace that optimally describes a given set of data. For instance, one measures the flow field x(t)
at different times t (these measurements are called snapshots) and then finds a subspace of a given
dimension that best fits the data. This method goes by many different names in different commu-
nities (e.g., principal component analysis, Karhunen-Loève expansion) but was first introduced to
the fluid mechanics community by Lumley (1970). Below, we discuss the method of snapshots, as
described by Sirovich (1987).

One begins with a data set of snapshots x1, . . . , xm, elements of R
n, for instance, obtained

by sampling a flow field at different times. One then forms a matrix X, whose columns are the
snapshots x j , and computes the reduced singular value decomposition (SVD) of this matrix:

X = U�VT =
r∑

j=1

σ j u j vT
j . (7)

Here, r is the rank of X, U is an n × r matrix with orthonormal columns u j , V is an m × r matrix
with orthonormal columns v j , and � is an r × r diagonal matrix with diagonal entries σ j ≥ 0,
ordered such that σ1 ≥ σ2 ≥ · · · ≥ σr . Because the columns of U and V are orthonormal, these
matrices satisfy UT U = VT V = I, the r × r identity matrix.

The vectors u j are the POD modes of the data set in X. These modes have the remarkable
property that, for any d ≤ r , the subspace spanned by {u1, . . . , ud } is the subspace of dimension d
that optimally represents the data, in the sense that

∑d
k=1 ‖Pxk −xk‖2 is minimized, where P again

denotes the orthogonal projection onto the subspace. The singular value σ j describes the energy
contained in POD mode u j . In particular, letting P j := u j uT

j denote the (rank-1) projection onto
POD mode u j , one can straightforwardly show that

m∑
k=1

‖P j xk‖2 = σ 2
j , j = 1, . . . , r ,

which is thus the total energy contained in POD mode u j for the data given in X (where the
energy in a vector x is defined simply as the square of the norm ‖x‖2 = xT x).
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Non-normal
systems: a linear
system of the form of
Equation 8 is called
normal if the matrix A
commutes with its
transpose:
AAT = AT A;
otherwise, it is called
non-normal;
eigenvectors of normal
matrices may be
chosen to be
orthogonal

It is often more natural to represent the data by an affine space (a shifted subspace), which can
be advantageous, for instance, if the mean of the snapshots {x1, . . . , xm} is large. If this is the case,
then one subtracts the mean from the snapshots before assembling them into the matrix X.

Because the POD modes form a subspace that optimally represents the data, one might think
that this is the end of the story: One now has a method for choosing the subspace S, so one
can then use the reduced-order model from Equation 6, with V = W = [u1 · · · ud ]. In fact, this
procedure does work well for some problems. However, it is often unreliable, and as shown below,
it can result in very poor low-dimensional models, even when the POD modes capture nearly all
the energy in a data set of interest. Although the subspace spanned by the POD modes is optimal
for describing a given data set, it is usually not optimal for Galerkin projection, as in Equation 6.
In fact, certain low-energy states can have a large influence on the dynamics yet not contribute
substantively to low-order POD modes.

Many examples have shown that POD performs particularly poorly for non-normal systems
with large transient growth, as often arise in shear flows (Chomaz 2005). For these systems, the
methods described in the following section typically perform much better than POD.

3. LINEAR MODELS

In this section, we consider linear models, which can closely approximate the dynamics of fluids in
certain regimes. For these systems, techniques for model reduction are well developed. In particu-
lar, we consider linear systems with a vector of inputs, denoted u(t), and outputs, denoted y(t). The
inputs describe external disturbances or, in the setting of flow control, any actuators we can use
to control the flow. The outputs describe the quantities we are interested in representing with a
reduced-order model; in a flow control setting, the outputs are typically the sensor measurements.
A linear input-output system then has the form

d
dt

x(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(8)

where x(t) ∈ R
n is the state vector, as considered above. The goal in determining a reduced-order

model is to obtain an alternative linear model that represents nearly the same dependence of y(t)
on u(t), but with a state vector with many fewer components than x(t).

Many techniques are available for the model reduction of linear systems, for instance, as dis-
cussed by Antoulas (2005). Here, we focus on methods that involve projection onto a subspace, as
described in Section 2, because this approach has been successfully used to describe flow mechanics
and because it generalizes to nonlinear systems (discussed in Section 4).

3.1. Balanced Truncation

Balanced truncation is a model reduction procedure based on a trade-off between controllability
and observability, concepts defined below. Introduced by Moore (1981), the method is widely used
in control theory and has a priori error bounds that are close to the minimum error achievable by
any reduced-order model (see, e.g., Dullerud & Paganini 1999, section 4.6).

Controllability refers to the ability of the input u to control the evolution of the state x. If
the state x(t) can be driven from zero (e.g., quiescent flow, or no perturbation from a base flow)
to some nonzero state x0 with an input u that is smaller than the input required to drive it to a
different state x̂0, then x0 is more controllable than x̂0. For model reduction, it seems intuitively
plausible to ignore states that are the least controllable, as these will not be excited (much) by
disturbances or actuator inputs.
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However, there is another aspect that is important to consider: Observability measures the effect
a given initial state has on future outputs. This characteristic is important given that determining
the evolution of the future outputs and ultimately controlling them are typically the objectives of
a reduced-order model. If a nonzero initial state x0 results in a larger output y(t) than a different
initial state x̂0, then x0 is more observable than x̂0. For model reduction, it then makes intuitive
sense to ignore the least observable states, as these have little effect on the outputs y(t) that we
wish to represent in our model.

The difficulty is that these two characteristics typically do not coincide: There are often states
that are weakly controllable though strongly observable, or vice versa, and in this case, it is not
clear that any of these states can be ignored. The approach taken in balanced truncation is to
transform to a coordinate system in which the controllability and observability properties are
balanced: That is, the states that are the most controllable are also the most observable. In these
coordinates, then, one simply truncates the states that are least controllable/observable.

Controllability and observability are quantified by defining the following n×n matrices (where
n is the full state dimension), called controllability and observability Gramians:

Wc =
∫ ∞

0
eAtBBT eAT t dt, Wo =

∫ ∞

0
eAT tCT CeAt dt. (9)

These integrals are defined as long as the system is stable (i.e., all eigenvalues of A have a negative
real part) and are usually evaluated by solving the Lyapunov equations

AWc + Wc AT + BBT = 0, AT Wo + Wo A + CT C = 0. (10)

[To see that solutions of Equation 10 are given by Equation 9, let Z(t) be one of the integrands in
Equation 9, integrate dZ/dt from zero to infinity, and use the fundamental theorem of calculus.]
Controllability of a state x is then quantified by making the following (nontrivial) observation: If
u(t) is the optimal (minimum-norm) input that drives the state from zero to state x (given infinite
time), then ‖u‖2 = xT W−1

c x (see, e.g., Dullerud & Paganini 1999, proposition 4.5). Thus, the
scalar xT Wc x quantifies how controllable a state x is: If this quantity is large, then a small input is
required to drive the state to x, so the state is strongly controllable.

Conversely, observability is quantified by observing from Equations 8 and 9 that, if the system
starts at state x at time t = 0, with u(t) = 0, then the resulting output has norm ‖y‖2 = xT Wo x.
Hence, if this quantity is large, the state x is strongly observable.

A remarkable fact is that, as long as the system is both controllable and observable (i.e., the
Gramians Wc and Wo have rank n), there exists a change of coordinates in which Wc and Wo are
equal, and even diagonal. In balanced truncation, one transforms to these coordinates and then
truncates the states that are least controllable and observable.

As described by Laub et al. (1987), this change of coordinates may be computed from the
Cholesky factorizations

Wc = Lc LT
c and Wo = Lo LT

o (11)

by computing the SVD

LT
o Lc = U�VT , (12)

from which one determines the balancing transformation T = Lc V�−1/2, with T−1 =
(Lo U�−1/2)T . Defining x(t) = Tz(t), then in the transformed coordinates z(t), we have Wc =
Wo = �. The diagonal entries of � are called the Hankel singular values: They are real and
non-negative, and normally ordered in decreasing order.
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Example 1. Consider the following linear system with a single state:

ẋ = −1
2

x + εu, y = 1
ε

x.

The Gramians are computed from Equation 10 as Wc = ε2 and Wo = 1/ε2, so if ε is
small, we see that state x is weakly controllable, but strongly observable. The balancing
transformation is computed as T = ε, and setting x = Tz, the transformed system is

ż = −1
2

z + u, y = x.

In these new coordinates, the Gramians are Wc = Wo = 1, so the realization is balanced.

There is, unfortunately, some inconsistency in the fluid mechanics literature about the calcula-
tion of the balancing transformation. For instance, Willcox & Peraire (2002) and Willcox (2007)
define the balancing transformation as the matrix of eigenvectors of the product Wc Wo . The main
problem with this definition is that the scaling of the eigenvectors is arbitrary, so although such
a transformation can simultaneously diagonalize the Gramians, they will not in general be equal
(and this is the whole point of balancing, to make the Gramians equal). In fact, it is straightforward
to see that the balancing transformation cannot be computed solely from the product Wc Wo . For
instance, in the preceding example, one obtains the product Wc Wo = 1, which is independent
of ε, so it is impossible to recover the balancing transformation T = ε from this product. Intu-
itively, the difficulty is that the product Wc Wo alone does not distinguish between modes that are
strongly controllable but weakly observable, and modes that are strongly observable but weakly
controllable.

Recall that the integrals in Equation 9 converge only if the system is stable (i.e., the eigenvalues
of A lie in the left half plane). If the system is unstable, one may first decompose the system into
an interconnection of stable and unstable components and then perform balanced truncation only
on the stable part (Hsu & Hou 1991), or one may consider alternative definitions of the Gramians
given in the frequency domain (Zhou et al. 1999). Variants of these approaches have been used in
examples by Barbagallo et al. (2009) and Ahuja & Rowley (2010).

3.2. Balanced Proper Orthogonal Decomposition

For systems with very large state dimension, the procedure above is computationally intractable:
For instance, if the state dimension is n = 106, the Gramians are n×n matrices that are symmetric,
and not sparse (even if A is sparse), so even storing such a matrix in double precision would require
3.6 terabytes of memory. Balanced POD provides an approximation of balanced truncation, using
an algorithm that is tractable for high-dimensional systems. It is based on defining empirical
Gramians, which approximate Wc and Wo from Equation 9 using data from simulations. One
then computes an approximate balancing transformation using an SVD as in Equation 12.

To determine the empirical controllability Gramian, one first calculates solutions of

d
dt

x(t) = Ax(t), x(0) = b j , (13)

where b j are the columns of the matrix B in Equation 8. Thus, this step requires one simulation
for each input (i.e., each component of u, corresponding to the columns b j ). Suppose snapshots
are taken from these simulations at time steps �t apart and arranged as columns of a matrix X.
The Gramian Wc in Equation 9 may then be approximated as Wc ≈ XXT �t.
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Similarly, the observability Gramian may be approximated from solutions of the adjoint system

d
dt

z(t) = AT z(t), z(0) = c j , (14)

where c j are columns of the matrix CT in Equation 8. This step then requires one adjoint simula-
tion for each output (each component of y, corresponding to the columns c j ). If these snapshots are
arranged as columns of a matrix Z, then the Gramian Wo may be approximated as Wo ≈ ZZT �t.

To compute the balancing transformation, one forms the reduced SVD of the matrix

ZT X = Ŵ�V̂T (15)

(note the similarity with Equation 12). Letting v̂ j and ŵ j denote the columns of V̂ and Ŵ, one
then defines the balancing modes v j and adjoint modes w j by

v j = σ
−1/2
j Xv̂ j , w j = σ

−1/2
j Zŵ j . (16)

These modes form a bi-orthogonal set (wT
k v j = δ j k), so we form a reduced-order model as in

Section 2. For a model with r states, we arrange the modes v1, . . . , vr as columns of a matrix V
and the adjoint modes w1, . . . , wr as columns of a matrix W. We then write x(t) = Va(t), where
a = (a1, . . . , ar ), and project as in Equation 6, to obtain the reduced-order model

d
dt

a(t) = WT AVa(t) + WT Bu(t),

y(t) = CVa(t) + Du(t).
(17)

The method discussed above was originally presented by Rowley (2005), and the idea of empir-
ical Gramians was provided by Lall et al. (1999, 2002). The above method is sometimes confused
with a related method given by Willcox & Peraire (2002): The methods are indeed closely related,
as both involve calculating empirical Gramians, but there are important differences. The method
of Willcox & Peraire (2002) involves calculating POD modes of the individual Gramians Wc and
Wo , and determining separate low-rank approximations for each. Thus, the procedure truncates
the least controllable and least observable modes before balancing, so if there are modes that
are weakly controllable yet strongly observable, they will be truncated prematurely. One would
therefore expect the procedure of Willcox & Peraire (2002) to perform poorly if there are modes
that are weakly controllable and strongly observable (and vice versa)—but these are precisely the
systems for which one would like to use balanced truncation in the first place. Indeed, the sep-
arate reduction of Gramians as proposed by Willcox & Peraire (2002) can result in significantly
less accurate reduced-order models than the above approach, as shown in an example in Rowley
(2005, section 4.2). Several examples of the application of balanced POD to fluid flows are listed
in Table 1.

3.3. Eigensystem Realization Algorithm

The ERA is a technique that seeks to extract a linear state-space model from impulse response
data. The ERA was first conceived by Juang & Pappa (1985) to analyze the structural dynamics of
spacecraft, but it shares close similarities with a number of previously proposed techniques (e.g.,
Ho & Kalman 1965, Kung 1978). More generally, the ERA is an example of a subspace system
identification method. More details about this class of methods and their potential applications
can be found in Verhaegen & Dewilde (1992), Viberg (1995), and Qin (2006).

Unlike POD and BPOD models, the ERA identifies a model directly from data and does
not require any a priori knowledge of the governing equations. Because the data are collected in
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Table 1 Examples of the use of balanced proper orthogonal decomposition (BPOD) for fluid systems

Study Applications, findings, and variants

Ilak & Rowley (2008) Three-dimensional channel flow; BPOD models outperform POD models due to dynamically
important, low-energy POD modes, and nonorthogonal projection in BPOD

Barbagallo et al. (2009) Control of cavity flow; balancing modes are more efficient than POD modes, but can be less robust

Dergham et al. (2011) Flow over a backward-facing step and square cavity; modified version of BPOD that uses
harmonically forced data

Semeraro et al. (2011, 2013) Modeling and control of Tollmien-Schlichting waves in a boundary layer to delay transition to
turbulence, for both linearized and nonlinear systems

Flinois et al. (2015) Linearized flow past a cylinder; direct application of BPOD to unstable systems

discrete time, we identify a discrete-time model of the form

xk+1 = Ad xk + Bd uk,
yk = Cd xk + Dd uk,

(18)

which captures the impulse response data. Note that an impulse response from Equation 18 will
be of the form {

Dd , Bd Cd , Bd Ad Cd , Bd A2
d Cd , . . .

}
. (19)

In practice, we may choose to sample less frequently than every step of the dynamics, so below we
assume we sample a pair of snapshots every P steps. With such data, the ERA algorithm proceeds
as follows:

1. Collect output data from an impulse response of the form {y0, yP , y2P , . . . , ymP } and
{y1, yP+1, y2P+1, . . . , ymP+1}.

2. Assemble the block Hankel matrices

H =

⎡
⎢⎢⎢⎢⎣

y0 yP y2P · · · ymc

yP y2P y3P · · · y(mc +1)
...

...
...

. . .
...

ymo P y(mo +1)P y(mo +2)P · · · y(mo +mc )P

⎤
⎥⎥⎥⎥⎦,

H# =

⎡
⎢⎢⎢⎢⎣

y1 yP+1 y2P+1 · · · ymc P+1

yP+1 y2P+1 y3P+1 · · · y(mc +1)P+1
...

...
...

. . .
...

ymo P+1 y(mo +1)P+1 y(mo +2)P+1 · · · y(mo +mc )P+1

⎤
⎥⎥⎥⎥⎦,

where mc and mo are chosen such that mc + mo ≤ m.

3. Compute the (reduced) SVD H = U�VT .

4. Truncate the SVD by considering only the first r columns of U and V, and the first r rows
and columns of � (with the singular values ordered by size), to obtain Ur , �r , and Vr , where
r is the desired model order.
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Table 2 Examples of the use of the eigensystem realization algorithm for fluid systems

Study Applications, findings, and variants

Cabell et al. (2006) Modeling and control of cavity tones (experiment) with a synthetic jet actuator

Ahuja & Rowley (2010) Modeling and control of unstable flow over an inclined plate (DNS); model obtained by projecting
out and treating separately the unstable modes; used Kalman filter to estimate full state

Illingworth et al. (2011, 2012) Modeling and control of cavity resonances (compressible, DNS), and combustion oscillations
(experiment); closed-loop stability achieved over a range of operating conditions

Brunton et al. (2013, 2014) Modeling (and control) of a pitching airfoil at low Reynolds number (DNS and experiment);
stability derivatives subtracted before performing ERA; observer/Kalman filter identification
utilized to experimentally determine Markov parameters for ERA

Belson et al. (2013) Model and control instabilities in a Blasius boundary layer (DNS); appropriate choice of sensor and
actuator locations allows for effective and robust control

Illingworth (2016) Modeling and control of unstable flow past a cylinder (DNS); ERA applied to an unstable system
that has been feedback stabilized, allowing for more effective controllers to be designed

Flinois & Morgans (2016) Flow over a D-shaped body (DNS); ERA applied directly to unstable system

Abbreviations: DNS, direct numerical simulation; ERA, eigensystem realization algorithm.

5. The matrices of the reduced-order model of a system with p inputs and q outputs are given
by

Ar = �−1/2
r UT

r H#Vr�
1/2
r ,

Br = the first p columns of �1/2
r VT

r ,
Cr = the first q rows of Ur�

1/2
r ,

Dr = y0.

(20)

Note that when p = 1, the data pairs in step 1 can just be taken from an impulse response sequence
with its last and first entries removed. This more general formulation allows for the skipping of
data when assembling H, which can reduce computational costs, while still allowing data to be
used across a large total time window.

In general, input-output data might not be available in the form of an impulse response, in
which case other more general subspace methods may be used (e.g., Verhaegen & Dewilde 1992).
Another approach is to use a technique such as observer/Kalman filter identification ( Juang et al.
1991) to compute an impulse response from input-output data with random inputs, before applying
the ERA.

In typical fluids systems, the data collected might be of very large dimension, which poses a
problem for the computational feasibility of the ERA given that the dimension of the block Hankel
matrices can become prohibitively large. One method to mitigate this issue is described by Ma
et al. (2011), in which POD can first be performed on the outputs (which could be the velocity
field of a fluid flow), and then some relatively small number of POD coefficients can be used as
outputs for the ERA. Ma et al. (2011) also showed that, assuming a sufficient quantity of exact data,
reduced-order models obtained via the ERA should be identical to those identified using BPOD.
One advantage of the ERA is that, unlike balanced truncation (and BPOD), no modifications are
needed to identify an unstable system. For instance, Illingworth et al. (2014) determined a model
of the unstable equilibrium in the flow past a cylinder. Conversely, a balanced truncation of a
stable system is guaranteed to be stable (Pernebo & Silverman 1982), but no such guarantee exists
for ERA models determined from data. Some successful demonstrations of the use of ERA to
model fluid flows are listed in Table 2.
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Pseudoinverse:
if Y = U�VT is the
reduced SVD of Y,
then the pseudoinverse
is Y+ = V�−1UT

3.4. Dynamic Mode Decomposition

DMD is a technique for determining, directly from data, both a low-dimensional subspace (i.e.,
the space S in Figure 1) and a description of the dynamics on that subspace. In particular, each
mode can be associated with a single frequency and growth/decay rate, so if {v1, . . . , vr } are DMD
modes, the decomposition given in Equation 1 becomes

x(t) =
r∑

j=1

c j eλ j tv j , (21)

where λ j ∈ C determines the growth/decay rate and oscillation frequency of the DMD mode v j .
Because data are usually available at discrete times, DMD is usually considered in the discrete-time
setting: If�t is the time step and k is an integer, with t = k�t andμ j = eλ j�t , the above expansion
becomes

x(k) =
r∑

j=1

c jμ
k
j v j . (22)

DMD was introduced by Schmid & Sesterhenn (2008) and Schmid (2010). In this original
formulation, one collects snapshots of data {y1, . . . , ym+1}, equally spaced in time, and assumes a
linear relation between them:

yk+1 = Ayk, k = 1, . . . , m, (23)

where the matrix A is not known explicitly. The DMD modes v j and eigenvalues μ j are then
determined as approximations of the eigenvectors and eigenvalues of A using a variant of an
Arnoldi algorithm (in particular, considering the Krylov subspace spanned by the known vectors
{y1, Ay1, A2y1, . . . , Amy1}).

We present a slightly more general formulation of DMD, as given by Tu et al. (2014b), in
which we consider pairs of snapshots (yk, y#

k ), for k = 1, . . . , m, and assume there is a linear
relation

y#
k = Ayk, k = 1, . . . , m. (24)

Clearly, the former is a special case of this (with yk+1 = y#
k ), but this generalization allows one to

consider multiple initial conditions and time series, instead of just a single sequential time series.
We then form a matrix Y, whose columns are the snapshots yk, and a corresponding matrix Y#,
whose columns are y#

k . The DMD modes and eigenvalues are then defined to be eigenvectors and
eigenvalues of the matrix

A = Y#Y+, (25)

where Y+ denotes the pseudoinverse of Y (Trefethen & Bau 1997, lecture 11). As shown by Tu
et al. (2014b), the eigenvalues obtained from this definition are identical to those obtained from
the original definition of DMD, and the eigenvectors are nearly identical, as discussed below.

Under mild conditions on the data (e.g., if the snapshots {yk} are linearly independent), Equa-
tion 24 holds exactly. If the problem is overconstrained, so that there is no matrix A such that
Equation 24 is exactly satisfied, then Equation 25 gives the least-squares solution that mini-
mizes

∑m
k=1 ‖y#

k − Ayk‖2. In this sense, DMD is related to least-squares approximation methods
(Gugercin & Antoulas 2006) and indeed is a close cousin of Prony’s method (de Prony 1795; see
Hildebrand 1974, section 9.4), which is probably the first model reduction method ever proposed.
(For a detailed discussion of Prony’s method and its many modern variants, readers are referred
to Hokanson 2013.)
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In order to actually compute the DMD modes and eigenvalues, one does not need to form the
matrix A explicitly. Instead, it is usually more practical to form a low-rank approximation of it, as
follows:

1. Compute the reduced SVD of Y = U�VT .
2. (Optional) Truncate the SVD by only considering the first r columns of U and V, and the

first r rows and columns of �, to obtain Ur , �r , and Vr .
3. Let Ã = UT

r AUr = UT
r Y#Vr�

−1
r , an r × r matrix.

4. Find the (discrete-time) eigenvalues μ j and eigenvectors ṽ j of Ã, with Ãṽ j = μ j ṽ j . Every
nonzero μ j is a DMD eigenvalue.

5. The DMD mode corresponding to μ j is given by v j = μ−1
j Y#Vr�

−1
r ṽ j .

6. Letting P = UrUT
r denote the projection onto the range of Ur , the projected DMD mode

Pv j is given by Pv j = Ur ṽ j .

It is straightforward to show that the resulting DMD modes v j are eigenvectors of the matrix A in
Equation 25 (with Y+ given by Vr�

−1
r UT

r ). It is common (e.g., Schmid 2010) to define the DMD
modes as simply Ur ṽ j ; we refer to these as projected DMD modes, as they are projections of the
eigenvectors v j onto the range of Ur . In practice, v j and Pv j are usually nearly identical because
the range of Y# is usually close to the range of Y.

For very large data sets, the algorithm presented here may be unfeasible given that it requires all
data to be loaded into memory at once. Hemati et al. (2014) provided a modified DMD algorithm,
in which data are loaded and processed in a streaming manner. A parallelized algorithm, in which
only two snapshots need to be loaded into memory on a given node at once, was presented by
Belson et al. (2014).

There are algorithmic similarities between DMD and other data-driven methods for system
identification. In particular, the optional step 2 of truncating small singular values frames DMD
as a linear model reduction technique. More precisely, Tu et al. (2014b) showed that DMD is
equivalent to the ERA, in the sense that Ã from DMD is related to Ar from the ERA by a similarity
transform, if the data matrices Y and Y# from DMD are taken to be the block Hankel matrices
H and H# from the ERA. As mentioned in Section 3.3, the ERA in turn can be shown to give
reduced-order models that are identical to those produced by BPOD (Ma et al. 2011). In this
sense, for the case of linear systems, all data-driven system identification algorithms discussed
here are closely related in the dynamics that they identify.

Taking the SVD of the data matrix X is almost equivalent to performing POD on the data,
with the columns of U being the orthogonal spatial modes (see Equation 7). (Note that to make
the modes orthonormal with respect to the usual spatial inner product, some additional scaling
may be required.) One important difference between POD and the decomposition in step 1 of
the DMD algorithm is that the mean is not first subtracted for DMD. This is important to note,
as it can be shown that subtracting the mean before applying DMD gives results identical to a
temporal discrete Fourier transform (Chen et al. 2011), if Equation 23 is satisfied exactly (e.g., if
the first m snapshots are linearly independent). This equivalence is generally undesirable, given
that the DMD eigenvalues become roots of unity (in particular, complex solutions of μm+1 = 1)
and no longer contain useful information about the data themselves.

There have been several modifications of DMD that have been proposed since its introduction,
which aim to address certain shortcomings, or make it more suitable to certain applications. Many
modal decomposition and system identification techniques have the common goal of obtaining
a reduced-order representation of the dynamics. For the case of DMD, one might achieve this
by selecting a subset of DMD mode/eigenvalue pairs that represent the dynamics of interest.
To this end, there are several ways in which the magnitudes of DMD modes can be compared
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Optimal transient
growth: for a linear
system, the optimal
transient growth mode
for a given time
horizon τ can be found
from the first column
of V in the SVD
eAτ = U�VT

(Tu et al. 2014b). Alternatively, one can seek a sparse representation of the dynamics, in the form
of a small number of modes with nonzero amplitude, by penalizing the �1 norm of the vector of
mode amplitudes ( Jovanović et al. 2014). By identifying the dynamics after first projecting onto
a energetically optimal subspace (i.e., when applying step 2 of the given DMD algorithm), one
also is restricting the number of modes that will be identified. Such a projection is not necessarily
dynamically optimal (for reasons discussed in Section 3.1), and it is possible to seek an optimal
subspace for projection along with the identification of the dynamics (Goulart et al. 2012, Wynn
et al. 2013). Chen et al. (2011) also provided an algorithm that gives a decomposition of a given
dimension that minimizes the error in the predicted trajectory. Proctor et al. (2014) proposed an
algorithm for using DMD on data from linear systems with (known) inputs, as in Equation 8.
One issue that can impede the extraction of accurate dynamical quantities and models from data
is the presence of noise, which is particularly an issue for experimental data. Although it has been
observed empirically that DMD can be sensitive to noisy data (Duke et al. 2012b, Pan et al. 2015),
recent work has explained this sensitivity and presented modifications to the algorithm to make
its outputs more robust to noisy data (Hemati et al. 2015, Dawson et al. 2016). Some examples of
the successful application of DMD to fluid flows are listed in Table 3.

3.5. Example: Linearized Channel Flow

To illustrate the methods discussed above, we demonstrate and compare them on a linearized
flow in a plane channel (plane Poiseuille flow). This flow exhibits the large transient growth seen
in many shear flows (Schmid 2007) and illustrates the difficulties POD methods have with such
systems. The three-dimensional incompressible Navier-Stokes equations are linearized about an
equilibrium velocity profile U (y) = 1−y2, in a domain that is periodic in the spanwise (z) direction,
with period 2π , considering perturbations that are streamwise constant. (Velocities are normalized
by the centerline velocity, and lengths by the channel half width.) The linearized equations in terms
of the wall-normal velocity v(y , z) and wall-normal vorticity η(y , z) are as follows (e.g., Schmid &
Henningson 2001, section 3.1):

∂

∂t

[
−� 0

0 I

][
v

η

]
=

[
−�2/Re 0
−U ′∂z �/Re

][
v

η

]
,

v(±1, z) = ∂yv(±1, z) = 0,
η(±1, z) = 0,

(26)

where� = ∂2
y +∂2

z denotes the Laplacian and Re is the Reynolds number. For numerical approxi-
mation, we use a spectral method with 16 Fourier modes in z and 32 Chebyshev polynomials in y ,
using the formulation described by Trefethen (2000) to obtain a system of the form dx/dt = Ax,
where the state vector x has 2 × 31 × 16 = 992 components.

In simulating this system, we choose an initial condition that maximizes the transient growth
of energy over a given time. The initial condition giving the largest transient growth across all
time horizons is shown in Figure 2a, which corresponds to a time horizon τ = 32.9. Note that
starting this system from this initial condition is equivalent to considering the impulse response
of a linear state space system (i.e., a system in the form given by Equation 8). We collect data
(wall-normal velocity and vorticity fields) for a total of 1,000 time units, with snapshots collected
every 0.05 time units.

We apply the various model reduction techniques discussed in this section to these data, with
Figure 2b showing the H ∞ error norms of the resulting models of various orders. This sys-
tem is sufficiently small that balanced truncation can be performed directly. We observe that
BPOD performs similarly to exact balanced truncation. By contrast, projecting the governing
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Table 3 Examples of the application of dynamic mode decomposition to fluid systems

Study Applications, findings, and variants

Rowley et al. (2009) Jet in crossflow (DNS)

Schmid (2010) Plane Poiseuille flow; linearized two-dimensional flow over a square cavity; wake of a flexible
membrane (PIV); jet between two cylinders (PIV)

Chen et al. (2011) Transitional cylinder flow (DNS)

Nastase et al. (2011) Lobed jet from three-dimensional diffusers (experiment)

Pan et al. (2011) Wake of a NACA 0015 airfoil with Gurney flap (PIV)

Schmid et al. (2011) Schlieren snapshots of a helium jet; PIV snapshots of an acoustically forced jet

Schmid (2011) Passive tracer in flame simulation and axisymmetric water jet experiment

Seena & Sung (2011) Turbulent cavity flow (DNS)

Duke et al. (2012a) Annular liquid sheet instabilities (experiment)

Grilli et al. (2012) Shockwave turbulent boundary layer interaction (DNS)

Jardin & Bury (2012) Flow past a cylinder, with forcing near the mean separation point (DNS)

Lee et al. (2012) Developing turbulent boundary layers over roughened walls (DNS)

Muld et al. (2012a) Wake of high-speed train model (detached eddy simulation)

Muld et al. (2012b) Flow over a surface-mounted cube (detached eddy simulation)

Schmid et al. (2012) Transitional water jet with tomographic PIV

Semeraro et al. (2012) Confined turbulent jet with coflow (PIV)

Bagheri (2013) Cylinder wake approaching limit cycle (DNS)

Ghommem et al. (2013) Flows in high-contrast porous media (DNS)

He et al. (2013) Boundary layer and cylinder configuration (experiment)

Meslem et al. (2013) Impinging circular jet (PIV)

Motheau et al. (2013) Gas turbine combustion instability (LES)

Sarkar et al. (2013) Nanofluid flow past a square cylinder (DNS)

Tu et al. (2013, 2014b) Wake of a cylinder (DNS) and finite-thickness flat plate (PIV)

Wynn et al. (2013) Flow over a backward-facing step (PIV) using optimal mode decomposition

Carlsson et al. (2014) Flow-flame interactions (LES)

Gómez et al. (2014) Turbulent pipe flow (DNS)

Jovanović et al. (2014) Sparsity-promoting DMD applied to two-dimensional plane Poiseuille flow; screeching supersonic jet
(LES); jet between two cylinders (PIV)

Ma & Liu (2014) Flow over high angle of attack, slender bodies (DNS)

Markovich et al. (2014) Swirling, confined flames and jets (PIV)

Tu et al. (2014a) Flow past a cylinder (PIV), temporally sparse data

Sarmast et al. (2014) Wind turbine wakes (LES)

Sayadi et al. (2014) Flat plate boundary layer transition to turbulence (DNS and LES)

Subbareddy et al. (2014) Transition of Mach 6 boundary layer with roughness element (DNS)

Thompson et al. (2014) Flow past elliptic cylinders (DNS)

Tissot et al. (2014) Flow past a cylinder (experiment), mode extraction for reduced-order modeling

Dunne & McKeon (2015) Dynamic stall on a pitching and surging airfoil (PIV)

Kramer et al. (2015) Flow in a two-dimensional differential heated cavity (DNS), for identification of flow regimes

Roy et al. (2015) Reacting flows behind bluff bodies (experiment)

Sayadi et al. (2015) Thermo-acoustic instabilities in ducted and bifurcating flames (numerical and experimental), using
parameterized DMD

Abbreviations: DMD, dynamic mode decomposition; DNS, direct numerical simulation; LES, large-eddy simulation; PIV, particle image velocimetry.
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||G||∞

Figure 2
(a) Vorticity contours of optimal transient growth mode for R = 1,000 and a time horizon τ = 32.9, which is used as an initial
condition/input. (b) H ∞ errors of models of orders 1–10 in comparison to the full system, identified from a variety of model reduction
algorithms described in Section 3. Abbreviations: BPOD, balanced proper orthogonal decomposition; DMD, dynamic mode
decomposition; ERA, eigensystem realization algorithm; POD, proper orthogonal decomposition.

equations onto POD modes gives models that are significantly less accurate across all model
orders.

Both POD and BPOD projection models inherently require knowledge of the underlying
governing equations. By contrast, DMD and the ERA obtain models directly from the data them-
selves. When using such methods to obtain a reduced-order model, there are several choices that
can be made. With DMD, perhaps the most naı̈ve method to obtain a reduced-order model is to
simply truncate the SVD that is computed within the DMD algorithm to the desired order (which
is equivalent to keeping only high-energy POD modes). This is step 2 in the DMD algorithm
presented in Section 3.4. Figure 2 shows that this approach (i.e., DMD with POD truncation)
does not work very well, especially for small model orders. For the ERA, direct truncation (i.e.,
applying step 4 in the ERA algorithm given in Section 3.3 with r taken to be the model order)
gives similar results, although the stacking of data into a Hankel matrix before truncating generally
results in more accurate models than DMD gives (which would be equivalent to the ERA with
only one set of outputs per column of the Hankel matrix). Note that ERA models with POD
projection use output projection data of the same order as the final model. Increasing the number
of outputs to include more POD modes did not improve performance.

An alternative, and better, approach when using DMD and ERA models is to first truncate
models to retain a larger number of modes, and then perform a balanced truncation on the
resulting model to obtain the final desired model order. This method is sometimes referred to as
overspecification. In this way, one can both obtain a balanced model and ensure that the subspace
and direction of projection are not discounting important dynamics, without needing to know the
full system equations. Figure 2b shows the results of this approach for DMD (labeled as DMD
with balanced truncation), with the ERA producing identical models. We note that the saturation
of the error with increasing model order largely results from the conversion of the identified
discrete-time model to continuous time for comparison with the true model.

We illustrate the performance of order-three models in more detail in Figure 3, in both the
time and frequency domain. Again, we see that balanced truncation, BPOD, and DMD or the ERA
combined with balanced truncation give very accurate models, whereas models based on POD
truncation are quite inaccurate, despite that the first three modes contain 99.65% of the energy of
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Figure 3
(a) Norm of the solution from different reduced-order models using three states. Models using BT, BPOD, and higher-order DMD or
ERA models reduced to three states with BT (BTDMD and BTERA) are indistinguishable from the exact solution and are shown on
one line. (b) Singular values of the frequency response of third-order models identified using various techniques. Abbreviations: BPOD,
balanced proper orthogonal decomposition; BT, balanced truncation; BTDMD, balanced truncation dynamic mode decomposition;
BTERA, balanced truncation eigensystem realization algorithm; DMD, dynamic mode decomposition; ERA, eigensystem realization
algorithm; POD, proper orthogonal decomposition.

the data. This emphasizes the importance of accounting for both observability and controllability
when performing model reduction.

For this relatively small system, balanced truncation can be computed directly, allowing for
comparison with the other model reduction methods; as the state dimension increases, however,
balanced truncation becomes intractable, as mentioned in Section 3.2. For the other methods dis-
cussed here, the major computational expense (aside from simulation time) is in taking the relevant
SVD of the data as described in the algorithms. For example, the computational cost of the BPOD
and DMD algorithms is dictated by the size of the matrices ZT X and Y, respectively. Techniques
such as BPOD and ERA have been successfully applied to fluid systems with tens of inputs and
outputs, and state sizes in the millions (Semeraro et al. 2013). From a computational perspective,
there is no reason why such algorithms could not be applied to larger, more complex systems.

4. NONLINEAR MODELS

We now turn to nonlinear models, for which the techniques for model reduction are much less well
developed. We again consider representing the state x(t) as a linear combination of modes, as in
Section 2. Although many of the methods of the previous section (e.g., balanced truncation) do not
apply directly to nonlinear systems, the general approach of Galerkin projection still applies and is
discussed first. It turns out that DMD (Section 3.4) does extend to nonlinear systems, as discussed
in Section 4.2, using an infinite-dimensional linear operator called the Koopman operator. This
formalism then leads to various extensions of the DMD algorithm, as discussed in Section 4.3.
Although this section focuses on systematic methods for model reduction of nonlinear systems,
other approaches specific to a particular application can often be quite useful (see the sidebar
Goman-Khrabrov Models, which describes unsteady separated flows over airfoils).
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GOMAN-KHRABROV MODELS

The nonlinear modeling techniques discussed here are by no means a comprehensive list. In particular, nonlinear
models taking a particular form are often used for specific problems, taking advantage of known physical insights.
For example, Goman-Khrabrov models (Goman & Khrabrov 1994) have been used successfully to model the lift
forces on a variety of lifting surfaces, such as delta wings (Goman & Khrabrov 1994), constant cross-section airfoils
(Williams et al. 2015a), and aircraft models (Luchtenburg et al. 2015). Goman-Khrabrov models have an internal
variable, x, which has dynamics governed by

τ1 ẋ + x = x0 (α(t) − τ2α̇(t)) ,

where τ1 and τ2 are time constants that can be calibrated for a particular configuration, α(t) is the angle of attack of
the airfoil, and x0 is a nonlinear function that notionally represents the fraction of flow separation on the suction
surface of the airfoil. For an ideal airfoil, the time-varying lift coefficient is then computed from

c l (α, x) = πα

2
(
1 + √

x
)2 ,

which can be modified to account for other airfoil shapes and characteristics.

4.1. Galerkin Projection

The method of (Petrov-)Galerkin projection, as presented in Section 2, applies to nonlinear
systems. However, in many cases, it is helpful to exploit the specific nature of the nonlinearity. To
see this, recall the procedure in Section 2, in which we define a set of modes {v1, . . . , vr }, which
are columns of V, and adjoint modes {w1, . . . , wr }, columns of W, which satisfy 〈v j , wk〉 = δ j k.
Letting x(t) = Va(t), where a = (a1, . . . , ar ), one finds that the projected equations are

d
dt

a(t) = WT f (Va(t)). (27)

The modes {v j } and {w j } may be obtained as POD modes of a particular data set, or even using
BPOD for the nonlinear equations linearized about an equilibrium point, as in Ilak et al. (2010).

The above expression represents r ordinary differential equations, so in principle, these should
not be difficult to solve numerically, as long as r is relatively small. However, to evaluate the
right-hand side, we need to evaluate f at the point x = Va: That is, we need to do an evaluation
in the high-dimensional space to compute the right-hand side of Equation 27.

Fortunately, in many situations, the situation is not so dire. For instance, the incompressible
Navier-Stokes equations are of course nonlinear, but the form of the nonlinearity is only
quadratic: u ·∇u. Thus, when the Navier-Stokes equations are discretized and written in the form
dx/dt = f (x) [where x(t) ∈ R

n denotes the discretized velocity field], the function f is quadratic
and may be written

f (x) = L(x) + Q(x, x), (28)

where L : R
n → R

n is linear, and Q : R
n × R

n → R
n is bilinear (linear in each argument). [Let us

assume that the variables have been chosen such that x = 0 is a steady solution of the Navier-Stokes
equations; otherwise, there will be an additional constant term in f (x).] For this specific form of
the nonlinearity, the right-hand side of Equation 27 may be evaluated explicitly in terms of a, as

d
dt

ak(t) =
r∑

i=1

Li
kai (t) +

r∑
i , j=1

Qi j
k ai (t)a j (t), (29a)
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Measure preserving:
the map F is measure
preserving if
μ(F−1(A)) = μ(A) for
all measurable sets
A ⊂ X

where

Li
k = 〈L(vi ), wk〉, Qi j

k = 〈Q(vi , v j ), wk〉, i , j , k = 1, . . . , r. (29b)

These terms may be calculated explicitly, given the modes vk and wk, so one does not need to
evaluate f while solving Equation 29a.

In the discussion of the Navier-Stokes equations above, we have ignored the pressure term.
In some cases, one does need to consider a pressure term (e.g., Noack et al. 2005; Holmes et al.
2011, section 4.3), but in many cases, the pressure drops out altogether, as a consequence of
the divergence theorem. For a flow evolving in a three-dimensional volume , taking the inner
product of ∇ p and a divergence-free mode wk gives

〈∇ p , wk〉 =
�


∇ p · wk dV =

�


∇ · (pwk) dV =
�

∂
pwk · n dA,

where n denotes the outward-facing unit vector normal to the boundary ∂. The boundary integral
vanishes under many common cases, for instance, if the fluid evolves in a periodic domain, or a
finite domain with no inflow or outflow (in which case wk · n must be zero on the boundary).

For incompressible flows, it suffices to consider quadratic nonlinearities as in Equation 28.
For more complicated nonlinearities, other methods are available, such as the discrete empirical
interpolation method (Chaturantabut & Sorensen 2010), although this method does not give an
explicit model as in Equation 29.

4.2. The Koopman Operator

We now turn to an alternative approach to nonlinear systems, with roots in ergodic theory. The
Koopman operator is a linear operator that completely characterizes the dynamics of a nonlinear
system. If this sounds too good to be true, there is indeed a catch: This operator is infinite
dimensional, even if the dynamical system is finite dimensional. However, we can learn something
from finite-dimensional approximations of this infinite-dimensional operator.

Let us consider a discrete-time dynamical system evolving on a set X , called the state space.
For a fluid flow, the state space would typically consist of divergence-free velocity fields, and the
dynamical system would arise from the unsteady Navier-Stokes equations. Let F : X → X be a
transformation that defines dynamics on X according to

x(k + 1) = F(x(k)), (30)

where x(k) ∈ X . The Koopman operator K acts on scalar-valued functions of x as

Kg(x) := g(F(x)). (31)

That is, K takes a scalar-valued function g and produces a new scalar-valued function g ◦ F. To be
rigorous, one needs to define the function space that K acts on: For instance, if we have a measure
μ on X (e.g., the Lebesgue measure, or an invariant measure of the dynamical system), we may
consider the space L2(X ,μ). If the map F is measure preserving, then K is a unitary operator.
For a fluid flow, a measure would define a notion of volume in the (infinite-dimensional) space
of velocity fields, and measure-preserving dynamics would preserve this notion of volume. Here,
however, we do not restrict ourselves to measure-preserving dynamical systems.

The Koopman operator is linear [e.g., K(g1 + g2) = Kg1 +Kg2], so it can have eigenfunctions,
which satisfy

Kϕ(x) = λϕ(x). (32)

To appreciate the potential of this approach, we observe that if the Koopman operator has enough
eigenfunctions, then one can use them to determine a (nonlinear) change of coordinates in which
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the dynamics are linear, and even uncoupled. Let ϕ j be eigenfunctions of K with corresponding
eigenvalues λ j and consider the new variables zj = ϕ j (x). Then the dynamics in these coordinates
are described by

zj (k + 1) = ϕ j (x(k + 1)) = ϕ j (F(x(k))) = Kϕ j (x(k)) = λ jϕ j (x(k)) = λ j z j (k), (33)

where k is a step in the discrete advancement, as in a time integration scheme. Thus, if we can
reconstruct x from z = (z1, . . . , zn) (i.e., if the map x �→ z is injective), then we have determined
coordinates in which the dynamics are linear. This may be viewed as a nonlinear version of
diagonalization. In practice, this procedure may fail, as K may not have enough eigenfunctions—
for instance, this happens for chaotic systems (Koopman & von Neumann 1932)—but there are
many systems for which it does work.

4.2.1. Connection with dynamic mode decomposition. In order to explain the connections
between DMD and the Koopman operator, we first define the notion of an observable, which is
simply a scalar-valued function of the state x [e.g., a continuous function in L2(X )]. Intuitively,
we may think of observables as the measurements we make: At a particular value of the state (e.g.,
velocity field), the observable gives us a real number, which is the measurement. We typically have
more than one scalar measurement, so we let ψ = (ψ1, . . . ,ψn) denote a vector of observables
[where each ψk ∈ L2(X )]. Suppose we have a set of data as in Section 3.4, with initial states
x j ∈ X , along with their images x#

j = F(x j ), though we do not necessarily have access to the
entire state x j (e.g., the entire flow field); rather, we have access only to the vector of observables
evaluated at that state,ψ(x j ) (e.g., several point measurements of the flow). We let y j = ψ(x j ) and
y#

j = ψ(x#
j ) denote these vectors of observables, and consider performing DMD on this data set,

as in Section 3.4. If the governing dynamics in Equation 30 are nonlinear, it is not clear what the
meaning of this DMD calculation is: The DMD procedure is performing a linear fit to the data,
which arose from a nonlinear system. However, under certain conditions, the DMD eigenvalues
are eigenvalues of the Koopman operator; furthermore, the eigenvectors may be used to find
the corresponding Koopman eigenfunctions. The following theorem, proven in Tu et al. (2014b,
section 4.1), gives precise conditions under which this relationship holds.

Theorem 1 (connection between DMD and the Koopman operator). Suppose ϕ
is an eigenfunction of K with eigenvalue λ, and suppose ϕ lies in the span of the observables
{ψ1, . . . ,ψn}, so that

ϕ(x) = w̄1ψ1(x) + · · · + w̄nψn(x) = w∗ψ(x) (34)

for some constants (w1, . . . ,wn) = w ∈ C
n. Suppose further that w lies in the range of the

data matrix Y, whose columns are ym = ψ(xm), m = 1, . . . , M . Then λ is an eigenvalue of
A = Y#Y+, and w is a left eigenvector of A: that is, w∗A = λw∗.

The notation w∗ denotes the complex-conjugate transpose of w. Note that here we need to
consider complex vectors because, although A is a real matrix, its eigenvectors may be complex.
The proof of this theorem is brief and illuminating.

Proof. Because Kϕ = λϕ, we have w∗ψ(F(x)) = λw∗ψ(x) for all x ∈ X . In particular, this
is true for x = x j , so because y j = ψ(x j ), this becomes w∗y#

j = λw∗y j . Arranging these
scalar equations into a row vector gives w∗Y# = λw∗Y, and thus w∗A = λw∗YY+ = λw∗,
where the last equality holds because w is in the range of Y. �
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x1

x2  = cx2
1

x2

Figure 4
Phase plane for Example 2. The light gray lines denote level sets of Koopman eigenfunctions ϕ1 (vertical ) and
ϕ2 (curved ); the thick lines denote invariant manifolds, which also correspond to zero level sets of ϕ1 and ϕ2.

In particular, one needs to have a sufficiently rich set of observables (for the Koopman eigen-
function ϕ to lie in the span of {ψ j }), as well as a sufficiently rich set of data (so that w is in the
range of Y). The following example (originally presented in Tu et al. 2014b) illustrates how DMD
can be used to construct Koopman eigenvalues and eigenfunctions, and what can go wrong if the
observables are not chosen judiciously.

Example 2 (planar ordinary differential equation). Consider the ordinary differential
equation given by

ẋ1 = λ1x1,
ẋ2 = λ2x2 + (2λ1 − λ2)c x2

1 .

This system has an equilibrium at the origin, and this equilibrium is stable if both λ1

and λ2 have a negative real part. Furthermore, the system has invariant manifolds given
by x1 = 0 and x2 = c x2

1 , as shown in Figure 4: If the state lies on one of these curves at
some time, it remains on it for all time.

We may convert this differential equation to discrete time by integrating from time
0 to �t. Letting x j (k) denote the value of x j at time k�t, and defining μ j = eλ j�t , the
discrete-time equations become

x1(k + 1) = μ1x1(k),
x2(k + 1) = μ2x2(k) + (μ2

1 − μ2)c x1(k)2.

This discrete-time system is stable if both μ1 and μ2 have a magnitude less than 1
(consistent with λ1 and λ2 having a negative real part). It is straightforward to check that
μ1 and μ2 are eigenvalues of the Koopman operator, with corresponding eigenfunctions

ϕ1(x) = x1,
ϕ2(x) = x2 − c x2

1 .

In addition, ϕk
1 is an eigenfunction with eigenvalue μk, the product ϕ1ϕ2 is an eigenfunc-

tion with eigenvalue μ1μ2, etc.
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Let us apply DMD to this example, with initial states x given by (1, 1), (5, 5), (−1, 1),
and (−5, 5), with μ1 = 0.9 and μ2 = 0.5, comparing different choices of observables.

First, let us use the observables ψ(x) = (x1, x2). If c = 0, so that the problem is
linear, then DMD eigenvalues are 0.9 and 0.5, which match the values of μ1 and μ2. If
c = 1, however, then the DMD eigenvalues are 0.9 and 2.002. The latter value does not
correspond to a Koopman eigenvalue, and because it has a magnitude >1, one might
even presume that the equilibrium is unstable!

Next, let us consider the observables ψ(x) = (x1, x2, x2
1 ). At first glance, it might seem

redundant to include the measurement x2
1 , because if we measure x1, of course we can

deduce x2
1 , but the point is that we need such a function in order for the Koopman

eigenfunction ϕ2(x) = x2 − c x2
1 to lie in the span of the observables. With these three

observables, the DMD eigenvalues are 0.9, 0.5, and 0.81 = 0.92, which agree with
Koopman eigenvalues. In addition, the Koopman eigenfunctions may be constructed
from the left eigenvectors of the DMD matrix A.

Finally, let us consider the observablesψ(x) = (x1, x2, x2
2 ). Now, the DMD eigenvalues

are 0.9, 0.822, and 4.767; the latter two do not correspond to Koopman eigenvalues, and
once again, one might be tempted to conclude that the equilibrium is unstable. In this
case, there is still an exact linear relationship between the snapshots (i.e., y#

j = Ay j is
satisfied exactly), but the eigenvalues do not correspond to Koopman eigenvalues because
the Koopman eigenfunction ϕ2 is not in the span of the observables.

4.2.2. Koopman modes. The DMD modes are right eigenvectors of A, but the Koopman eigen-
functions are determined from the left eigenvectors of A. It is natural to consider how the DMD
modes are related to the Koopman operator.

Let us assume that the DMD matrix A has a full set of right eigenvectors v j (the DMD modes),
with eigenvalues λ j , and corresponding left eigenvectors w j , normalized so that 〈v j , wk〉 :=
w∗

kv j = δ j k. Then any vector q ∈ R
n may be expanded as

q =
n∑

j=1

(w∗
j q)v j . (35)

In particular, the vector of observablesψ(x) may be expanded in this way. Definingϕ j (x) = w∗
jψ(x),

we then have

ψ(x) =
n∑

j=1

ϕ j (x)v j . (36)

If all the ϕ j in this sum correspond to Koopman eigenfunctions (i.e., if the conditions of Theorem 1
are satisfied), then the terms v j in this sum are called Koopman modes. Note that the Koopman
modes v j depend on the observables ψ, whereas the Koopman eigenfunctions ϕ j do not. With
the dynamics given by Equation 30, we have

ψ(x(k)) =
n∑

j=1

λk
jϕ j (x(0))v j . (37)

Comparing this expression with Equation 22, we observe that the Koopman modes define the
vectors v j in this expression (the DMD modes), and the Koopman eigenfunctions determine the
constants c j = ϕ j (x(0)).

Example 3 (linear system). Let us consider a linear system, with x(k + 1) = Ax(k). For
such a system, we show that if we measure the full state,ψ(x) = x, the Koopman modes
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are simply the (right) eigenvectors of A. Assume A has a full set of eigenvectors v j that
satisfy Av j = λ j v j , with corresponding left eigenvectors w j that satisfy w∗

j A = λ j w∗
j ,

normalized so that w∗
j vk = δ j k. First, observe that the function ϕ j (x) = w∗

j x is a Koopman
eigenfunction:

Kϕ j (x) = ϕ j (Ax) = w∗
j Ax = λ j w∗

j x = λ jϕ j (x).

Next, observe that if we measure the full state [corresponding to the observableψ(x) = x],
then we may write

x =
n∑

j=1

(w∗
j x)v j =

n∑
j=1

ϕ j (x)v j .

Comparing the above equation with Equation 36, we see that the v j are the Koopman
modes.

The connection between DMD and the Koopman operator was first presented in Rowley et al.
(2009). This paper also introduced the terminology Koopman modes, although this concept was
considered earlier by Mezić (2005). Bagheri (2013) gave a nice example of the application of these
methods, presenting Koopman modes for the flow past the cylinder and comparing numerical
approximations of DMD eigenvalues with Koopman eigenvalues calculated analytically from a
Stuart-Landau equation.

4.3. Extended Dynamic Mode Decomposition

The results of the previous section (in particular, Theorem 1) demonstrate a connection between
DMD and the Koopman operator, which provides an interpretation of what DMD eigenvalues/
modes mean for a nonlinear system. However, Theorem 1 applies only under fairly restrictive
conditions: The Koopman eigenfunction must lie within the space spanned by the observables
{ψ j }. What happens if the conditions of this theorem are not met? Does any connection between
the Koopman operator and DMD still hold? As we might expect, the answer is yes, although some
approximation is necessary.

Williams et al. (2015b) showed that the above DMD procedure may be viewed as a spectral
collocation method for approximating the Koopman operator K. One considers a subspace of
functions spanned by the observables {ψ j } and writes a matrix approximation of K with respect
to this basis. This technique is referred to as extended dynamic mode decomposition (EDMD)
because DMD (as presented in Section 3.4) is a special case with the observables ψ(x) = x.

Similar to any spectral method, the quality of the approximation depends on the basis func-
tions chosen (in this case, the observables), and Williams et al. (2015b) suggested several dif-
ferent possibilities, such as polynomials, indicator functions on small boxes (Ulam’s method),
radial basis functions, and spectral elements. The appropriate choice depends on the nature of
the data. For example, if the Koopman eigenfunctions are relatively smooth, then polynomials
might be a good choice; if they have discontinuities, then spectral elements might be a better
choice.

We now give an example of how this EDMD framework can be applied specifically to fluid
systems, using knowledge of the governing equations to guide our selection of observables.
Expressing the POD coefficients as before by a = UT

r x, we let

q = ψ(x) =
[

a
vec (a ⊗ a)

]
, (38)
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where vec (a ⊗ a) indicates a vector of all nonredundant quadratic couplings between POD co-
efficients (i.e., a2

1 , a1a2, a2
2 ). If we retain r POD modes, then the total number of observables is

n = r + r(r + 1)/2. From Equation 24, we obtain a model for the dynamics:

q(k + 1) = Aq(k). (39)

When using such a model for prediction, one can also take advantage of the known relationships
between the linear and quadratic states to improve accuracy. (Note that the evolution of the
quadratic terms would include higher-degree polynomials.) Additionally, although Equation 39 is
a linear model in the expanded state q, it can be written as a nonlinear model in a. That is, within
the matrix A are the terms required to construct a model of the form

a(k + 1) = L(a(k)) + Q(a(k), a(k)), (40)

where L : R
r → R

r is linear, and Q : R
r × R

r → R
r is bilinear. Aside from the possible addition

of a pressure term, this is the same form of nonlinear model that would be arrived at through
Galerkin projection of the governing equations onto POD modes (Equation 28). Although
Galerkin projection uses data for identification of a spatial reduced-order basis and the governing
equations to identify a reduced-order model, here we are using the governing equations only
to pick an appropriate transformation ψ and are using temporally resolved data to identify the
dynamics.

4.3.1. Example: flow past a cylinder. We apply this particular form of EDMD to the well-
studied case of flow past a circular cylinder. Beyond a critical Reynolds number of approximately
47 (Provansal et al. 1987), the equilibrium becomes unstable, and there is a stable limit cycle
that corresponds to vortex shedding. We perform a numerical simulation for Re = 60, with the
initial condition close to the unstable equilibrium, and gather data that capture the initial growth
near the unstable equilibrium, through convergence to the limit cycle. This is an example in
which regular DMD will fail to capture the appropriate dynamics (in the sense of identifying
an appropriate reduced-order model) given that the dynamics are fundamentally nonlinear. The
data were generated using an immersed boundary projection method (Taira & Colonius 2007,
Colonius & Taira 2008), with the unstable equilibrium solution computed by employing selective
frequency damping (Åkervik et al. 2006).

Figure 5 shows the performance of both Galerkin projection and the EDMD approach outlined
above in identifying a model that can predict the evolution of the first three POD coefficients.
These evolve on a paraboloid, as observed by Noack et al. (2003), and here the third POD mode
resembles the shift mode in Noack et al. (2003). Here the mean of the data (rather than the mean
of the limit cycle) was subtracted from the data before performing POD to use a data-driven
perspective, and to be consistent with the subspace used for both procedures. We observe that the
EDMD model is more accurate than the Galerkin projection model in terms of obtaining both the
correct transient and limit-cycle behavior. We note that the accuracy of the Galerkin projection
model is sensitive to the extent and resolution of the data used.

Figure 6 compares both model procedures again, but with access to only a subset of the data,
in this case only the first 400 snapshots. Even though these data have not reached the limit cycle,
the EDMD model still accurately predicts the location of the limit cycle. This contrasts with the
Galerkin model, in which the limited data available modify the spatial structure of the computed
POD modes to an extent that renders the model qualitatively incorrect. This example highlights
the advantages that can be gained from using data-driven dynamical modeling, particularly when
the form of the nonlinear model is known a priori.
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Figure 5
Performance of third-order Galerkin and extended dynamic mode decomposition (EDMD) nonlinear models in predicting the
evolution of proper orthogonal decomposition coefficients for transitional flow past a cylinder, showing (a) time evolution and (b) phase
portrait plots. The Galerkin and EDMD phase portrait models are allowed to evolve for 800 dimensionless time units to confirm
limit-cycle behavior.

4.3.2. Kernel method. A drawback of the EDMD approach is that the number of basis functions
can grow rapidly with the state dimension. For instance, we saw above that if the state dimension is
n and one considers quadratic functions of the state, then the number of observables is O(n2). If one
wishes to include polynomials of higher degree, the situation gets much worse: For polynomials
of degree d in n variables, the number of observables is ( n+d

n ) (Bishop 2007), so for n = 100 states,
including polynomials up to degree d = 10 gives ∼1013 observables, far too many for practical
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Figure 6
Performance of third-order Galerkin and extended dynamic mode decomposition (EDMD) nonlinear models in predicting the
evolution of proper orthogonal decomposition coefficients for transitional flow past a cylinder, showing (a) time evolution and (b) phase
portrait plots. Models are identified using only the first 400 snapshots of data, as shown in panel a.
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computation. Williams et al. (2014) proposed using a kernel method from machine learning to
reduce these calculations to O(n).

One begins by rearranging the expression for the DMD matrix in Equation 25 as follows. Let
Y and Y# be matrices of snapshots as in Section 3.4: If q denotes the number of observables and
m the number of snapshots, then Y and Y# have dimension q × m. We are interested in the case
in which q � m. We define the m × m matrices

G = YT Y, M = YT Y#, (41)

and let

Ã = G+M = (YT Y)+YT Y# = Y+Y#. (42)

The DMD matrix A = Y#Y+ from Equation 25 is q × q , but we may calculate its nonzero
eigenvalues and the corresponding eigenvectors from those of the smaller m × m matrix Ã as
follows: If Ãṽ = λṽ, then letting v = Y#ṽ, we see that

Av = (Y#Y+)(Y#ṽ) = Y#λṽ = λv. (43)

So this approach provides an alternative to the algorithm presented in Section 3.4 for calculating
DMD/Koopman modes.

Now, we observe that

G j k = 〈ψ(x j ),ψ(xk)〉, M j k = 〈ψ(x j ),ψ(x#
k)〉, (44)

so these matrices depend only on the inner products of observables. If the number of observables
q is very large, however, these inner products will be cumbersome to evaluate. The key feature
of a kernel method is to evaluate these inner products more efficiently using a kernel function
k : R

n × R
n → R, defined by

k(x, x̂) = 〈
ψ(x),ψ(x̂)

〉
. (45)

The idea is then to choose a kernel function that is easy to evaluate yet corresponds to the desired
inner product in Equation 45. For example, the kernel k(x, x̂) = (1 + xT x̂)d corresponds to a set
of observables ψ consisting of all monomials in components of x up to degree d (Bishop 2007,
section 6.2). For instance, for x ∈ R

2 and d = 2, we see that

(1 + xT x̂)2 = 1 + 2x1 x̂1 + 2x2 x̂2 + x2
1 x̂2

1 + 2x1x2 x̂1 x̂2 + x2
1 x̂2

2

= 〈ψ(x),ψ(x̂)〉,

with ψ(x) = (1,
√

2x1,
√

2x2, x2
1 ,

√
2x1x2, x2

2 ). Thus, using the kernel function k, we can compute
the inner products in Equation 44 without ever explicitly writing down the observables ψ. Many
other choices of kernel functions are possible besides the polynomial kernel considered above
(e.g., exponential kernels, Gaussian kernels), each of which corresponds to a different implicit
choice of observables ψ. This idea can lead to dramatic computational savings: For the example
with n = 100 states, with observables consisting of polynomials up to degree d = 10, we may
evaluate each inner product in Equation 44 with only n = 100 operations, instead of q ∼ 1013

operations. This then enables one to apply EDMD for bases of very large dimension, with no
more computational effort than one uses to compute DMD as in Section 3.4. Williams et al.
(2014) demonstrated that the kernel method identifies physically relevant Koopman eigenvalues
(and modes) much more effectively than standard DMD in examples including simulations of the
Fitzhugh-Nagumo equation, and experimental data of flow past a circular cylinder.
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5. CONCLUDING REMARKS

This review discusses a number of methods suitable for extracting the essential dynamical features
from data describing fluid flows. This is a large and rapidly evolving field, and many techniques
are available. Above we focus on several methods that have been effective in examples in fluid
mechanics; most of these techniques (although not all) may be applied to data from either simula-
tions or experiments. We highlight the similarities and connections between the various methods,
many of which were developed in disciplines other than fluid mechanics.

SUMMARY POINTS

1. POD and Galerkin projection are good, general-purpose tools for model reduction.
However, they can perform poorly, particularly for non-normal systems or other systems
that have large sensitivity to small changes in the state.

2. For linear systems, there are several effective techniques for model reduction that are
computationally tractable even for high-dimensional fluid problems. Some techniques,
such as balanced truncation and BPOD, rely on accurate full-order models or simulation
data, whereas other techniques, such as the ERA and DMD, can identify dynamics solely
from data.

3. In an example of linearized channel flow, we found that the most effective model reduction
technique based solely on data (i.e., without knowledge of governing equations) was to
first compute a model using DMD, retaining more modes than ultimately desired, and
then perform balanced truncation to determine a reduced-order model.

4. For nonlinear systems, general techniques are not as well developed. POD/Galerkin
models can work well but often require careful tuning to give satisfactory results.

5. The Koopman operator can be used to study nonlinear systems, and its eigenfunctions
and corresponding Koopman modes may be computed using a version of DMD. These
eigenfunctions may be used, for instance, to determine coordinates in which the sys-
tem is linear and uncoupled (a nonlinear version of diagonalization), and the Koopman
modes can be used to understand coherent structures that occur at a particular temporal
frequency.

FUTURE ISSUES

1. For flow control problems, one would like to know where to place sensors and actuators.
Although some preliminary work has been done on model problems (Chen & Rowley
2011), for practical applications this is still a challenging problem for which reduced-
order models may be able to contribute.

2. All of the reduced-order models discussed above involve some approximation and cor-
responding error. Incorporating uncertainty quantification into these models would be
a valuable contribution. Some promising directions are given by Sapsis & Lermusiaux
(2009) and Sapsis & Majda (2013).
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3. When applying (E)DMD to a nonlinear system, one needs to specify a set of basis
functions (observables). As shown in Section 4.2 (Example 2), the effectiveness of DMD
depends critically on the basis chosen. This choice is presently more of an art than a
science, and a better understanding of suitable basis functions is needed.

4. For linear systems, there are reliable methods for incorporating the effect of a control
input, using many of the methods discussed in Section 3. For nonlinear systems, however,
it is much more challenging to model the effect of inputs. One approach is provided by
Lall et al. (2002), but this is limited to relatively mild nonlinearities (e.g., a globally
stable equilibrium). Perhaps the Koopman-based ideas in Section 4.2 can be adapted to
nonlinear systems with inputs, but this area remains to be explored.

5. Challenging eigenvalue problems and other computational tasks constitute the core of
many of the techniques reviewed. Advancing computer power will continue to push the
envelope of what is computationally feasible.
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