CDS 101/110: Lecture 10.1
Limits on Performance

November 28, 2016

Goals:
* Introduce concept of limits on performance of feedback systems
* Introduce Bode’s integral formula and the “waterbed” effect
* Show some of the limitations of feedback due to RHP poles and zeros

Reading:
e Astrom and Murray, Feedback Systems, Section 12.6



“Loop Shaping”: Design Loop Transfer Function
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Translate specs to “loop shape”
L(s) = P(s)C(s)

Design C(s) to obey constraints

[T2.(s — z)

H;-lzl(S —Dj)

C(s) =k

® Poles/Zeros from PID
® Poles/Zeros from

= Lead
= Lag
Check the “Gang of Four”
1 L(s)
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Algebraic Constraints on Performance
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Goal: keep S & T small
® S small = low tracking error

® T small = good noise rejection (and L(s)|
robustness) 3 \\—/\ bigl < L
Problem: S+T=1 ;E» L(s) > 1
® Can’'t make both S & T small at the
same frequency
® Solution: keep S small at low frequency
and T small at high frequency * Transition between large gain and small
® Loop gain interpretation: keep L large gain complicated by stability (phase
at low frequency, and small at high margin)

frequency



Bode’s Integral Formula and the Waterbed Effect

1
1+L(s)

Bode’'s integral formula for S(s) = = Gor = Gyn = Gyg = —Gep

» Let p;, be the unstable poles of L(s) and assume relative degree of L(s) = 2

« Theorem: the area under the sensitivity function is a conserved quantity:

o’e o’e 1
fo 109, |S(Jw)|dw :fo log, ——dw =7)» Rep

Sensitivity Function
10

Waterbed effect:

e Making sensitivity smaller over some
frequency range requires increase in
sensitivity someplace else

*Presence of RHP poles makes this
effect worse

e Actuator bandwidth further limits what
Area below 0 dB +

ou can do
area above 0 dB = y | o o
7 ¥ Re p, = constant *Note: area formula is linear in w; Bode

40 plots are logarithmic
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Example: Magnetic Levitation

|
Electro-
| magnet

-

Ball !
mRELR
~ transmitter

System Dynamics

mZ =mg — k,(k,u)?/z*

where:
[ ) u p—

*Vir =

viT — kTZ —+ UO

current to electromagnet
voltage from IR sensor

System description

« Ball levitated by electromagnet
 |nputs: current thru electromagnet
o Outputs: position of ball, z, (from IR sensor)

e States: z,z

« Dynamics: F =
generated by wire coll

Linearization:

ma, F = magnetic force

P(s) =

— 72

 Polesats = +r = open loop unstable



Phase (deg); Magnitude (dB)
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Bode Diagram

Linearization:

P(s) = P

« Polesats = +r = open loop unstable
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Nyquist Diagram

Note: RHP pole in L = need
one net encirclement (CCW)
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Phase (deg); Magnitude (dB)

Control Design

Need to create encirclement Can accomplish using a lead

 To offset RHP pole compensator
. Loop shaping is not useful here * Produce phase lead at crossover

» Flip gain to bring Nyquist plot over -1 * Generates loop in Nyquist plot

point
ST Q
* Insert phase to create CCW C(s) = —k
encirclement s+ b
- Bode Diagram Nyquist Diagram
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Control Design

Need to create encirclement Can accomplish via lead compensator

® | oop shaping is not useful here * Produce phase lead at crossover

® Flip gain to bring Nyquist plot over -1 * Generates loop in Nyquist plot

point
ST a
® Insert phase to create CCW C(s) = —k ;
encirclement 5
50 Bode Dilagram | Nyquist Diagram
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Performance Limits

Magnitude (dB)

Nominal design gives low perf Bode integral limits improvement
® Not enough gain at low frequenc oC .
9ng quency log |S(Jw) |dw = 7r
® Try to adjust overall gain to improve low 0 o
frequency response e Must increase sensitivity at some
o , _ point
Works well at moderate gain, but notice
waterbed effect
Sensitivity Function Step Response
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Right Half Plane Zeros

Right half plane zeros produce “non-minimum phase” behavior
e Phase vs. frequency has additional lag (not “minimum?”) for a given magnitude

e Can cause output to move opposite from input for a short period of time

S+ A S —a
s*+2Cw s+

Example: H (s)=

2 2
s*+2Cw s+ W)

Bode Diagrams Step Response
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Example: Lateral Control of the Ducted Fan

. 2 /
o~ H o (s) = (5" =meD)
xf, 2 2
s (Js* +ds + mgl)
MES.) * Poles: 0,0,—c + i w,
/> « Zeros: +./mgl
-
Source of non-minimum phase behavior os | Step Response
® To move left, need to make 8 > 0 of
® To generate positive 8, need f; > 0 05 |
® Positive f; causes fan to move right = 1
initially E 1';3 ~ Fan moves right and

® Fan starts to move left after short time ~ then moves to the left
(as fan rotates)
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Stability in the Presence of (RHP) Zeros

Loop gain limitations

® Poles of closed loop = poles of 1 + L. Suppose C(s) = kn.(s)/d.(s), where k is the
controller gain

nenp  dedp + knenyp
dedp dedy

1+ L =14k

® For large k, closed loop poles approach open loop zeros
® RHP zeros limit maximum gain = serious design constraint!

Root locus interpretation 5 Original pole

: : ! location (k=0
® Plot location of eigenvalues as a : ( )
function of the loop gain k

® Can show that closed loop poles go Ofe= ~ R
from open loop poles (k = 0) to open 2 &

loop zeros (k = x) L CIo;g;jolsoop
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Additional performance limits due to RHP zeros @

Another waterbed-like effect: look at maximum of H,, over frequency range:

M, = max |H, (jo)] M, = max | H,,(jo)|

) =
W SW =W, O=w=oo

Theorem: Suppose that P(s) has a RHP zero at z. Then there exist constants ¢; and c,
(depending on w¢, w,, z) such that ¢; logM; + c,M, = 0.

® M typically << 1 = M2 must be larger than 1 (since sum is positive)

® |f we increase performance in active range (make M1 and Her smaller), we must lose
performance (Her Increases) some place else

® Note that this affects peaks not integrals (different from RHP poles)

INCreases

1 | — peak

s* —mgl

H(s) = — (2 gl)
s°(Js” +ds +mgl)
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1
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Magnitude (dB)

Reduced sensitivity
W <W =<0, ® better performance
®up to higher frequency
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Summary: Limits of Performance

Many limits to performance I\R/Iliilg &?221%%1 ;g;g \?vvhoeig
® Algebraic: S+T=1 . -
) . ever possible (eg, re-design)
® RHP poles: Bode integral formula

® RHP zeros: Waterbed effect on peak of S
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Announcements

Homework #8 is due on Friday, 2 pm
® In class or HW slot (102 STL)

Final exam
® Out on 5 Dec (Mon.)
® Due on Fri. December 9, by 5 pm:
= turn in to Sonya Lincoln
= 250 Gates-Thomas

® Final exam review: December 2 from
2-3 pm, 105 Annenberg

® Office hours during study period

= 5 Dec (Mon), 3-5 pm
= 6 Dec (Tue), 3-5 pm
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