
CDS 101/110: Lecture 10.1
Limits on Performance

November 28, 2016

Goals:
• Introduce concept of limits on performance of feedback systems
• Introduce Bode’s integral formula and the “waterbed” effect
• Show some of the limitations of feedback due to RHP poles and zeros

Reading: 
• Åström and Murray, Feedback Systems, Section 12.6 
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“Loop Shaping”: Design Loop Transfer Function
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𝐿𝐿 𝑠𝑠 = 𝑃𝑃 𝑠𝑠 𝐶𝐶(𝑠𝑠)

Design C(s) to obey constraints

𝐶𝐶 𝑠𝑠 = 𝑘𝑘
∏𝑖𝑖=1
𝑛𝑛𝑧𝑧 (𝑠𝑠 − 𝑧𝑧𝑖𝑖)

∏𝑗𝑗=1
𝑛𝑛𝑝𝑝 (𝑠𝑠 − 𝑝𝑝𝑗𝑗)

• Poles/Zeros from PID
• Poles/Zeros from

- Lead 
- Lag

Check the “Gang of Four”

𝑆𝑆 =
1

1 + 𝐿𝐿(𝑠𝑠)
; 𝑇𝑇 =

𝐿𝐿(𝑠𝑠)
1 + 𝐿𝐿(𝑠𝑠)

𝑃𝑃𝑆𝑆 =
𝑃𝑃(𝑠𝑠)

1 + 𝐿𝐿(𝑠𝑠)
; 𝐶𝐶𝑆𝑆 =

𝐶𝐶(𝑠𝑠)
1 + 𝐿𝐿(𝑠𝑠)
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Algebraic Constraints on Performance

Goal: keep S & T small
• S small ⇒ low tracking error
• T small ⇒ good noise rejection (and 

robustness)

Problem: S + T = 1
• Can’t make both S & T small at the 

same frequency
• Solution: keep S small at low frequency 

and T small at high frequency
• Loop gain interpretation: keep L large 

at low frequency, and small at high 
frequency

 Transition between large gain and small 
gain complicated by stability (phase 
margin)
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Bode’s Integral Formula and the Waterbed Effect

Bode’s integral formula for 𝑆𝑆 𝑠𝑠 = 1
1+𝐿𝐿(𝑠𝑠)

= 𝐺𝐺𝑒𝑒𝑒𝑒 = 𝐺𝐺𝑦𝑦𝑛𝑛 = 𝐺𝐺𝑣𝑣𝑣𝑣 = −𝐺𝐺𝑒𝑒𝑛𝑛

• Let 𝑝𝑝𝑘𝑘 be the unstable poles of 𝐿𝐿(𝑠𝑠) and assume relative degree of 𝐿𝐿(𝑠𝑠) ≥ 2

• Theorem: the area under the sensitivity function is a conserved quantity:

Waterbed effect:
Making sensitivity smaller over some 
frequency range requires increase in 
sensitivity someplace else
Presence of RHP poles makes this 
effect worse
Actuator bandwidth further limits what 
you can do
Note: area formula is linear in 𝜔𝜔; Bode 
plots are logarithmic
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Example: Magnetic Levitation

System description
• Ball levitated by electromagnet
• Inputs: current thru electromagnet
• Outputs: position of ball, 𝑧𝑧, (from IR sensor)
• States: 𝑧𝑧, �̇�𝑧
• Dynamics: 𝐹𝐹 = 𝑚𝑚𝑚𝑚, 𝐹𝐹 = magnetic force 

generated by wire coil
IR

receivier
IR

transmitter

Electro-
magnet

Ball

System Dynamics

𝑚𝑚�̈�𝑧 = 𝑚𝑚𝑚𝑚 − 𝑘𝑘𝑚𝑚 𝑘𝑘𝐴𝐴𝑢𝑢 2/𝑧𝑧2

𝑣𝑣𝑖𝑖𝑒𝑒 = 𝑘𝑘𝑇𝑇𝑧𝑧 + 𝑣𝑣0
where:

• 𝑢𝑢 = current to electromagnet
• 𝑣𝑣𝑖𝑖𝑒𝑒 = voltage from IR sensor

Linearization:

𝑃𝑃 𝑠𝑠 =
−𝑘𝑘

𝑠𝑠2 − 𝑟𝑟2

• Poles at 𝑠𝑠 = ±𝑟𝑟 ⇒ open loop unstable
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Bode Plot of Open Loop System
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Linearization:

𝑃𝑃 𝑠𝑠 =
−𝑘𝑘

𝑠𝑠2 − 𝑟𝑟2

• Poles at 𝑠𝑠 = ±𝑟𝑟 ⇒ open loop unstable
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Control Design

Need to create encirclement
• To offset RHP pole
• Loop shaping is not useful here
• Flip gain to bring Nyquist plot over -1 

point
• Insert phase to create CCW 

encirclement

Can accomplish using a lead 
compensator
 Produce phase lead at crossover
 Generates loop in Nyquist plot
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Control Design

Need to create encirclement

• Loop shaping is not useful here
• Flip gain to bring Nyquist plot over -1 

point
• Insert phase to create CCW 

encirclement

Can accomplish via lead compensator
 Produce phase lead at crossover
 Generates loop in Nyquist plot
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Performance Limits
Nominal design gives low perf

• Not enough gain at low frequency
• Try to adjust overall gain to improve low 

frequency response
• Works well at moderate gain, but notice 

waterbed effect

Bode integral limits improvement

 Must increase sensitivity at some 
point
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Right Half Plane Zeros
Right half plane zeros produce “non-minimum phase” behavior

• Phase vs. frequency has additional lag (not “minimum”) for a given magnitude
• Can cause output to move opposite from input for a short period of time

Example:                                               vs
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Example: Lateral Control of the Ducted Fan

Source of non-minimum phase behavior
• To move left, need to make θ > 0
• To generate positive θ, need 𝑓𝑓1 > 0
• Positive 𝑓𝑓1 causes fan to move right 

initially
• Fan starts to move left after short time 

(as fan rotates)

 Poles: 0, 0,−𝜎𝜎 ± 𝑖𝑖 𝜔𝜔𝑑𝑑

 Zeros: 
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Stability in the Presence of (RHP) Zeros
Loop gain limitations
• Poles of closed loop = poles of 1 + L.  Suppose 𝐶𝐶(𝑠𝑠) = 𝑘𝑘 𝑛𝑛𝑐𝑐(𝑠𝑠)/𝑑𝑑𝑐𝑐(𝑠𝑠), where k is the 

controller gain

• For large k, closed loop poles approach open loop zeros
• RHP zeros limit maximum gain ⇒ serious design constraint!

Root locus interpretation
• Plot location of eigenvalues as a

function of the loop gain k
• Can show that closed loop poles go

from open loop poles (k = 0) to open
loop zeros (𝑘𝑘 = ∞)
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Additional performance limits due to RHP zeros
Another waterbed-like effect: look at maximum of 𝐻𝐻𝑒𝑒𝑒𝑒 over frequency range:

Theorem: Suppose that 𝑃𝑃(𝑠𝑠) has a RHP zero at 𝑧𝑧.  Then there exist constants 𝑐𝑐1 and 𝑐𝑐2
(depending on 𝜔𝜔1, 𝜔𝜔2, 𝑧𝑧) such that 𝑐𝑐1 log𝑀𝑀1 + 𝑐𝑐2𝑀𝑀2 ≥ 0.

• M1 typically << 1 ⇒ M2 must be larger than 1 (since sum is positive)
• If we increase performance in active range (make M1 and Her smaller), we must lose 

performance (Her increases) some place else
• Note that this affects peaks not integrals (different from RHP poles)

 Poles: 0, 0,−𝜎𝜎 ± 𝑗𝑗 𝜔𝜔𝑑𝑑

 Zeros: ± 𝑚𝑚𝑚𝑚𝑚𝑚

peak
increases

Reduced sensitivity
better performance

up to higher frequency



14

Summary: Limits of Performance
Many limits to performance
• Algebraic: S + T = 1
• RHP poles: Bode integral formula
• RHP zeros: Waterbed effect on peak of S

Main message: try to avoid 
RHP poles and zeros when-
ever possible (eg, re-design)
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Announcements

Homework #8 is due on Friday, 2 pm
• In class or HW slot (102 STL)

Final exam
• Out on 5 Dec (Mon.)
• Due on Fri. December 9, by 5 pm: 

- turn in to Sonya Lincoln 
- 250 Gates-Thomas

• Final exam review: December 2 from 
2-3 pm, 105 Annenberg

• Office hours during study period
- 5 Dec (Mon), 3-5 pm
- 6 Dec (Tue), 3-5 pm
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YouTube: “Chicken Head Tracking”
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