

CDS 101/110: Lecture 10.1 Limits on Performance

November 28, 2016

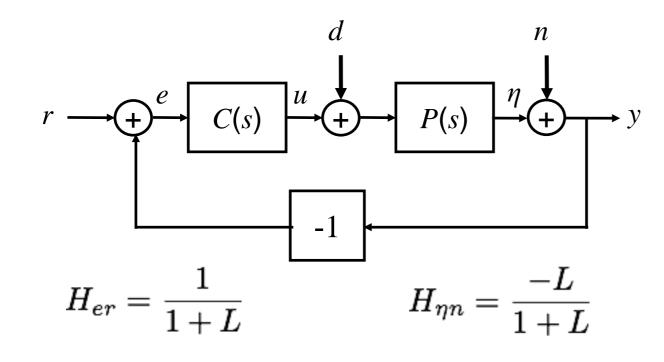
Goals:

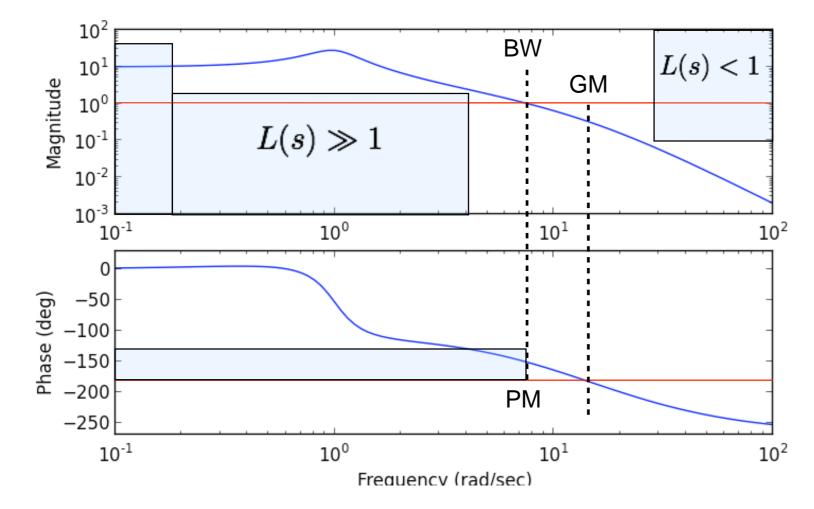
- Introduce concept of limits on performance of feedback systems
- Introduce Bode's integral formula and the "waterbed" effect
- Show some of the limitations of feedback due to RHP poles and zeros

Reading:

• Åström and Murray, Feedback Systems, Section 12.6

"Loop Shaping": Design Loop Transfer Function





Translate specs to "loop shape"

L(s) = P(s)C(s)

Design C(s) to obey constraints

$$C(s) = k \frac{\prod_{i=1}^{n_z} (s - z_i)}{\prod_{j=1}^{n_p} (s - p_j)}$$

- Poles/Zeros from PID
- Poles/Zeros from

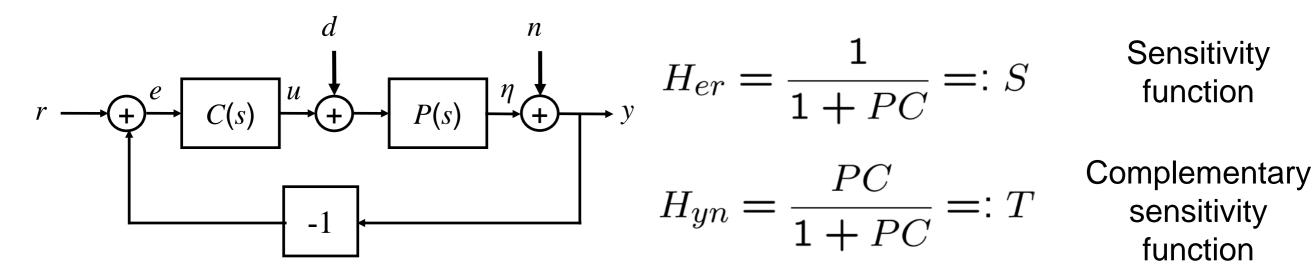
- Lead

- Lag

Check the "Gang of Four"

$$S = \frac{1}{1 + L(s)}; \quad T = \frac{L(s)}{1 + L(s)}$$
$$PS = \frac{P(s)}{1 + L(s)}; \quad CS = \frac{C(s)}{1 + L(s)}$$

Algebraic Constraints on Performance

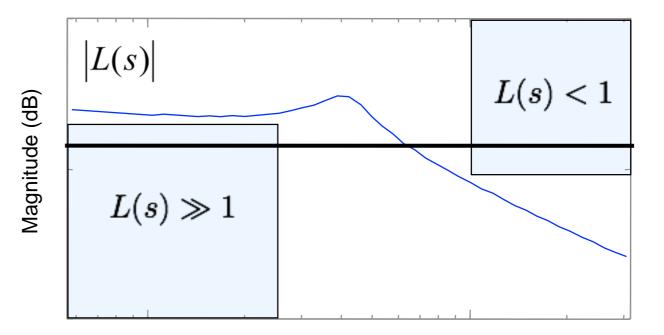


Goal: keep S & T small

- S small \Rightarrow low tracking error
- T small ⇒ good noise rejection (and robustness)

Problem: S + T = 1

- Can't make both S & T small at the same frequency
- Solution: keep S small at low frequency and T small at high frequency
- Loop gain interpretation: keep L large at low frequency, and small at high frequency



 Transition between large gain and small gain complicated by stability (phase margin)

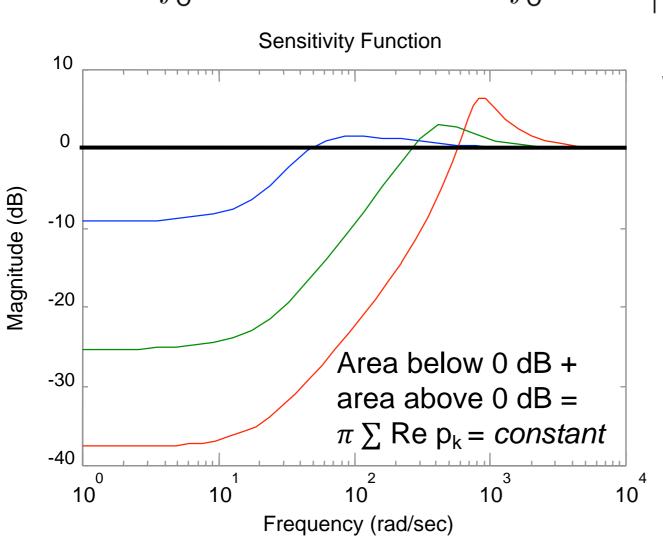
Bode's Integral Formula and the Waterbed Effect

Bode's integral formula for $S(s) = \frac{1}{1+L(s)} = G_{er} = G_{yn} = G_{vd} = -G_{en}$

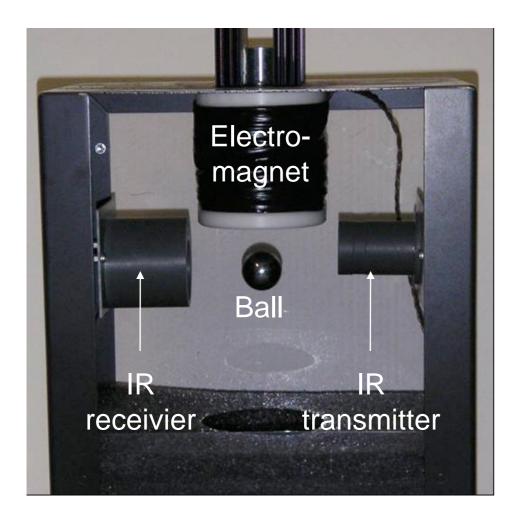
- Let p_k be the unstable poles of L(s) and assume relative degree of $L(s) \ge 2$
- **Theorem:** the area under the sensitivity function is a conserved quantity:

$$\int_{0}^{\infty} \log_{e} |S(j\omega)| d\omega = \int_{0}^{\infty} \log_{e} \frac{1}{|1 + L(j\omega)|} d\omega = \pi \sum \operatorname{Re} p_{k}$$
Sensitivity Function
Waterbed effect:
•Making sensitivity smaller over

- Making sensitivity smaller over some frequency range requires *increase* in sensitivity someplace else
 - •Presence of RHP poles makes this effect worse
 - Actuator bandwidth further limits what you can do
 - •Note: area formula is linear in ω ; Bode plots are logarithmic



Example: Magnetic Levitation



System description

- Ball levitated by electromagnet
- Inputs: current thru electromagnet
- Outputs: position of ball, *z*, (from IR sensor)
- States: *z*, *ż*
- Dynamics: F = ma, F = magnetic force generated by wire coil

System Dynamics

$$m\ddot{z} = mg - k_m (k_A u)^2 / z^2$$
$$v_{ir} = k_T z + v_0$$

where:

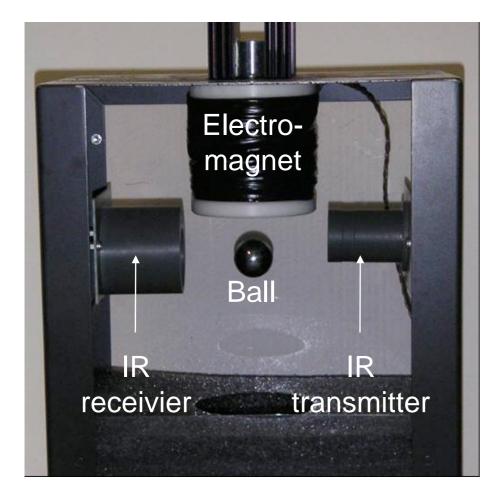
- u =current to electromagnet
- v_{ir} = voltage from IR sensor

Linearization:

$$P(s) = \frac{-k}{s^2 - r^2}$$

• Poles at $s = \pm r \Rightarrow$ open loop unstable

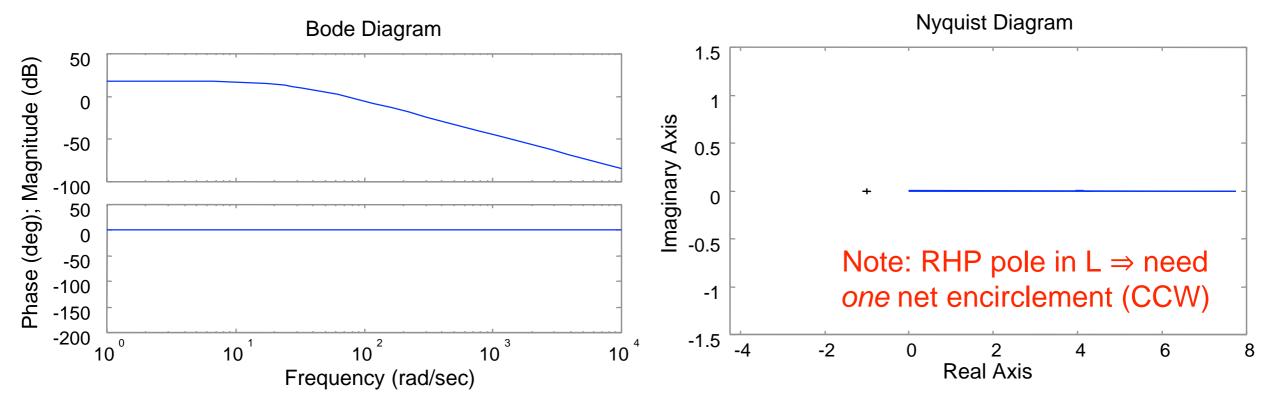
Bode Plot of Open Loop System



Linearization:

$$P(s) = \frac{-k}{s^2 - r^2}$$

• Poles at $s = \pm r \Rightarrow$ open loop unstable



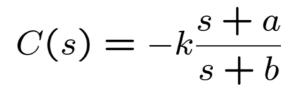
Control Design

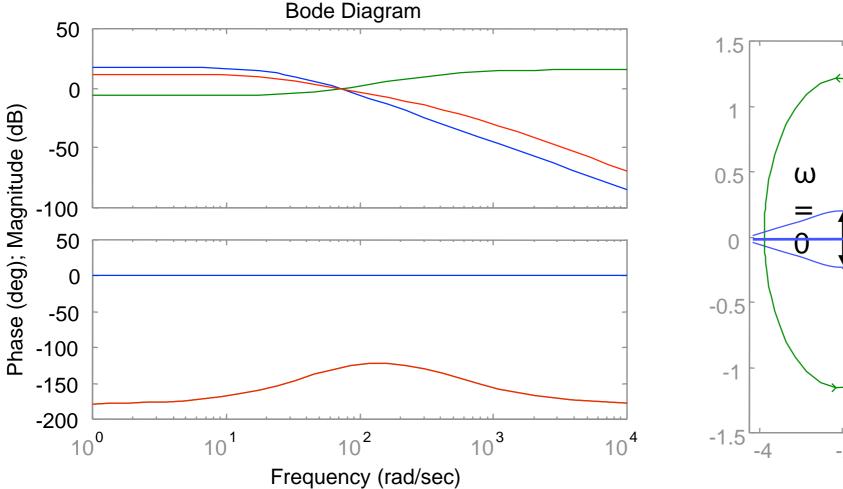
Need to create encirclement

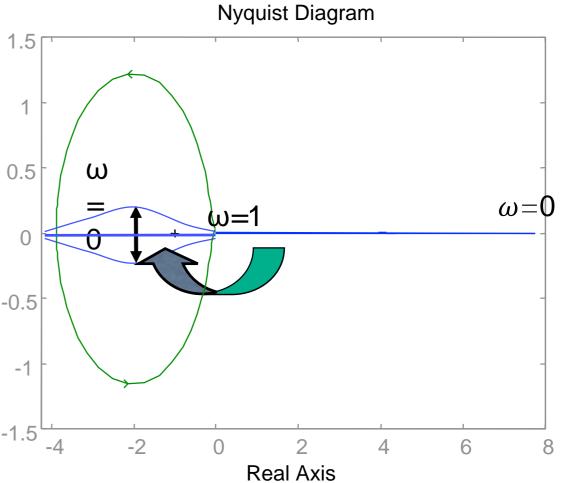
- To offset RHP pole
- Loop shaping is not useful here
- Flip gain to bring Nyquist plot over -1 point
- Insert phase to create CCW encirclement

Can accomplish using a lead compensator

- Produce phase lead at crossover
- Generates loop in Nyquist plot







Control Design

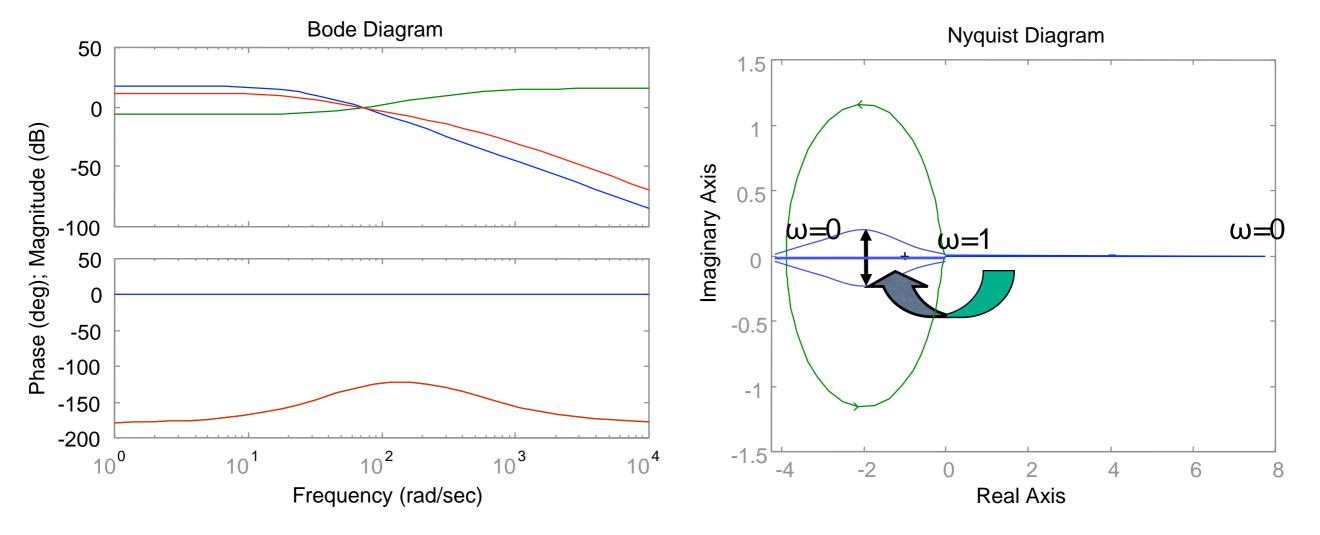
Need to create encirclement

- Loop shaping is not useful here
- Flip gain to bring Nyquist plot over -1 point
- Insert phase to create CCW encirclement

Can accomplish via lead compensator

- Produce phase lead at crossover
- Generates loop in Nyquist plot

$$C(s) = -k\frac{s+a}{s+b}$$



Performance Limits

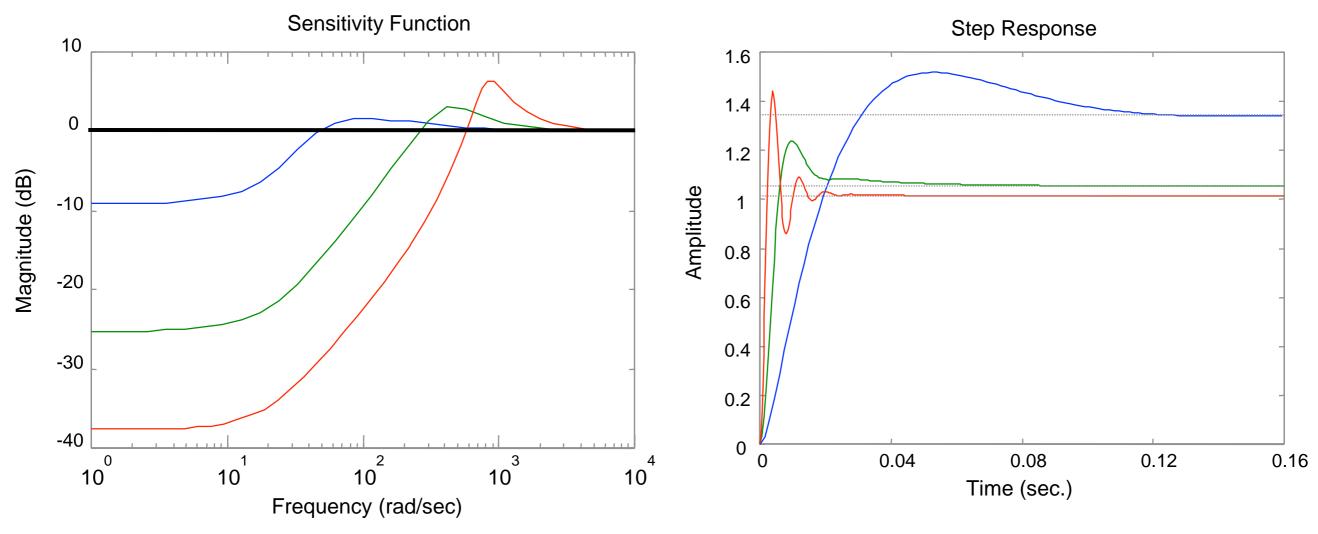
Nominal design gives low perf

- Not enough gain at low frequency
- Try to adjust overall gain to improve low frequency response
- Works well at moderate gain, but notice waterbed effect

Bode integral limits improvement

$$\int_0^\infty \log |S(j\omega)| d\omega = \pi r$$

 Must increase sensitivity at some point

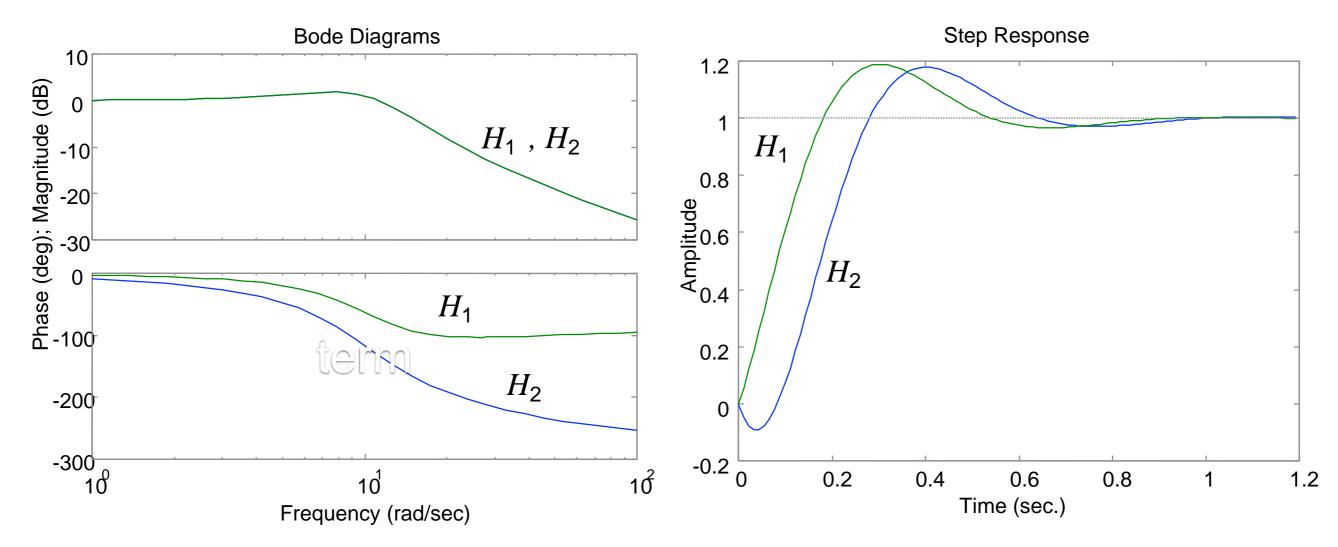


Right Half Plane Zeros

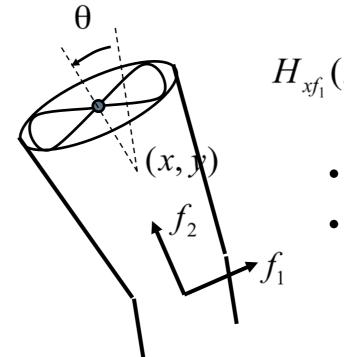
Right half plane zeros produce "non-minimum phase" behavior

- Phase vs. frequency has additional lag (not "minimum") for a given magnitude
- Can cause output to move opposite from input for a short period of time

Example:
$$H_1(s) = \frac{s+a}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
 vs $H_2(s) = \frac{s-a}{s^2 + 2\zeta\omega_n s + \omega_n^2}$



Example: Lateral Control of the Ducted Fan



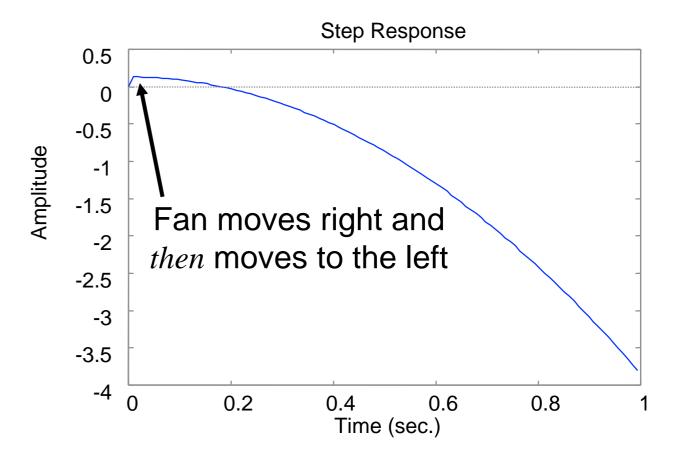
$$H_{xf_1}(s) = \frac{(s^2 - mgl)}{s^2(Js^2 + ds + mgl)}$$

• Poles: 0, 0, $-\sigma \pm i \omega_d$

• Zeros: $\pm \sqrt{mgl}$

Source of non-minimum phase behavior

- To move left, need to make $\theta > 0$
- To generate positive θ , need $f_1 > 0$
- Positive f_1 causes fan to move right initially
- Fan starts to move left after short time (as fan rotates)



Stability in the Presence of (RHP) Zeros

Loop gain limitations

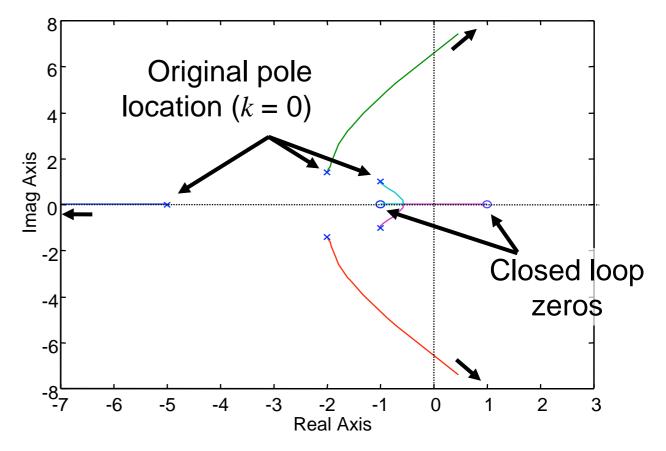
• Poles of closed loop = poles of 1 + L. Suppose $C(s) = k n_c(s)/d_c(s)$, where k is the controller gain

$$1 + L = 1 + k \frac{n_c n_p}{d_c d_p} = \frac{d_c d_p + k n_c n_p}{d_c d_p}$$

- For large k, closed loop poles approach open loop zeros
- RHP zeros limit maximum gain \Rightarrow serious design constraint!

Root locus interpretation

- Plot location of eigenvalues as a function of the loop gain k
- Can show that closed loop poles go from open loop poles (k = 0) to open loop zeros ($k = \infty$)



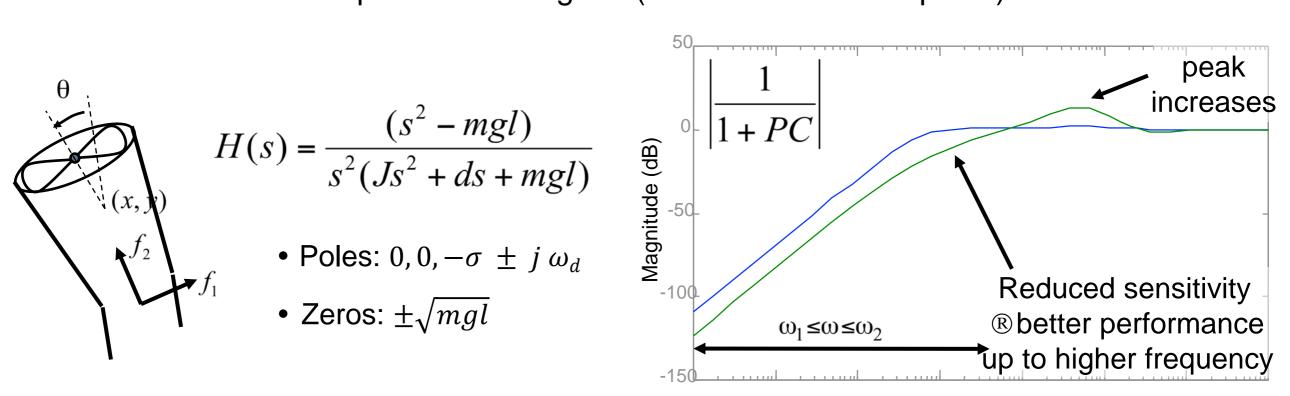
Additional performance limits due to RHP zeros

Another waterbed-like effect: look at maximum of H_{er} over frequency range:

 $M_{1} = \max_{\omega_{1} \le \omega \le \omega_{2}} |H_{er}(j\omega)| \qquad \qquad M_{2} = \max_{0 \le \omega \le \infty} |H_{er}(j\omega)|$

Theorem: Suppose that P(s) has a RHP zero at z. Then there exist constants c_1 and c_2 (depending on ω_1 , ω_2 , z) such that $c_1 \log M_1 + c_2 M_2 \ge 0$.

- M_1 typically << 1 \Rightarrow M_2 must be larger than 1 (since sum is positive)
- If we increase performance in active range (make M_1 and H_{er} smaller), we must lose performance (H_{er} increases) some place else
- Note that this affects peaks not integrals (different from RHP poles)



Frequency (rad/sec)

Summary: Limits of Performance

Many limits to performance

• Algebraic: S + T = 1

Magnitude (dB)

- RHP poles: Bode integral formula
- RHP zeros: Waterbed effect on peak of S

Main message: try to avoid RHP poles and zeros whenever possible (eg, re-design)

$$\int_{0}^{\infty} \log_{e} |S(j\omega)| d\omega = \int_{0}^{\infty} \log_{e} \frac{1}{|1 + L(j\omega)|} d\omega = \pi \sum \operatorname{Re} p_{k}$$
Sensitivity Function
$$\int_{0}^{\infty} \frac{\log |T(i\omega)|}{\omega^{2}} d\omega = \pi \sum_{i} \frac{1}{z_{i}}$$
RHP poles
$$\bigoplus_{i=1}^{\infty} \frac{1}{1 + L(j\omega)} \int_{0}^{\infty} \frac{\log |T(i\omega)|}{\omega^{2}} d\omega = \pi \sum_{i} \frac{1}{z_{i}}$$
RHP poles

Announcements

Homework #8 is due on Friday, 2 pm

• In class or HW slot (102 STL)

Final exam

- Out on 5 Dec (Mon.)
- Due on Fri. December 9, by 5 pm:
 - turn in to Sonya Lincoln
 - 250 Gates-Thomas
- Final exam review: December 2 from 2-3 pm, 105 Annenberg
- Office hours during study period
 - 5 Dec (Mon), 3-5 pm
 - 6 Dec (Tue), 3-5 pm