## Problem Set 3

## Problem 1

Consider the system whose dynamics are given by:

$$
\tau \frac{d x}{d t}=-x+u \quad y=x
$$

We know the response is $y(t)=C A^{-1} e^{A t} B+D-C A^{-1} B$ where $C=1, B=\frac{1}{\tau}, A=-\frac{1}{\tau}$.
Plugging in and simplifying, we get $y(t)=1-e^{\frac{t}{\tau}}$
Time to get to $0.1 y_{s s} \rightarrow 0.1=1-e^{\frac{t}{\tau}} \rightarrow t=0.105 \tau$
Time to get to $0.9 y_{s s} \rightarrow 0.9=1-e^{\frac{t}{\tau}} \rightarrow t=2.3 \tau$.
Rise time $t_{r}=(2.3-0.105) \tau=2.2 \tau \approx 2 \tau$.
$1 \%$ Settling time: $\rightarrow 0.99=1-e^{\frac{t}{\tau}} \quad \rightarrow \quad t=4.6 \tau$
$2 \%$ Settling time: $\rightarrow 0.98=1-e^{\frac{t}{\tau}} \quad \rightarrow \quad t=3.91 \tau \approx 4 \tau$
$5 \%$ Settling time: $\rightarrow 0.95=1-e^{\frac{t}{\tau}} \quad \rightarrow \quad t=3.0 \tau$

## Problem 2

Consider the system

$$
\ddot{x}+2 \zeta w_{0} \dot{x}+w_{0}^{2} x=w_{0}^{2} u
$$

Part (a): Convert the dynamic system to first order form
Denote $x_{1}=x, \quad x_{2}=\dot{x}$.

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-w_{0}^{2} & -2 \zeta w_{0}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
w_{0}^{2}
\end{array}\right] u
$$

Part (b): Determine and plot the impulse response of this system for the case $C=\left[\begin{array}{ll}1 & 0\end{array}\right]$
Response $h(t)=C e^{A t} B$
$A=V D V^{-1}$ where

$$
V=\left[\begin{array}{cc}
-\frac{\left(\zeta+\sqrt{\zeta^{2}-1}\right)}{w_{0}} & -\frac{\left(\zeta-\sqrt{\zeta^{2}-1}\right)}{w_{0}} \\
1 & 1
\end{array}\right] \quad D=\left[\begin{array}{cc}
-w_{0}\left(\zeta-\sqrt{\zeta^{2}-1}\right) & 0 \\
0 & -w_{0}\left(\zeta+\sqrt{\zeta^{2}-1}\right)
\end{array}\right]
$$

$$
h(t)=C e^{A t} B=C V e^{D t} V^{-1} B
$$

$$
h(t)=\left[-\frac{\left(\zeta+\sqrt{\zeta^{2}-1}\right)}{w_{0}}-\frac{\left(\zeta-\sqrt{\zeta^{2}-1}\right)}{w_{0}}\right]\left[\begin{array}{cc}
\exp \left(-w_{0}\left(\zeta-\sqrt{\zeta^{2}-1}\right)\right) & 0 \\
0 & \exp \left(-w_{0}\left(\zeta+\sqrt{\zeta^{2}-1}\right)\right)
\end{array}\right]\left[\begin{array}{l}
-\frac{w_{0}^{2}\left(\zeta-\sqrt{\zeta^{2}-1}\right)}{2 \sqrt{\zeta^{2}-1}} \\
\frac{w_{0}^{2}\left(\zeta+\sqrt{\zeta^{2}-1}\right)}{2 \sqrt{\zeta^{2}-1}}
\end{array}\right]
$$

The impulse response for $w_{0}=1, \zeta=0.5$ is shown below (with code for finding the impulse response and generating the plot).


```
%Find Impulse Response
syms w0 zed t
A = [0 1; -w0^2 -2*zed*w0];
B = [0; w0^2];
C = [1 0];
[V, D] = eig(A);
%Get the eigendecomposition
V = simplify(V);
D = simplify(D);
y_unit = simplify(C*A^-1*V*expm(D*t)*V^-1*B - C*A^-1*B);
%Pick w_0=1 and zed=0.5 and plot impulse response
```

```
w0 = 1;
zed = 0.5;
A = [0 1; -w0^2 -2*zed*w0];
B = [0; w0^2];
C = [1 0];
time = 1500;
t = zeros(1,time);
response = zeros(1,time);
hline = zeros(1,time);
for i = 1:time
    t(i) = i*0.01;
    response(i) = C*expm(A*t(i))*B;
end
plot(t, response)
hold on
plot(t, hline, 'k--')
hold off
```

Part (c): Find the response of this system to a unit step input, assuming that $x(0)=0, \dot{x}(0)=0$.

Response $h(t)=C A^{-1} e^{A t} B-C A^{-1} B$

$$
h(t)=1-e^{-\zeta w_{0} t} \cos \left(w_{d} t\right)-\frac{\zeta}{\sqrt{1-\zeta^{2}}} e^{-\zeta w_{0} t} \sin \left(w_{d} t\right)
$$

where $w_{d}=w_{0} \sqrt{\zeta^{2}-1}$.
See Lectures notes from 10/21/2016 (Slides 5-8) for detailed derivation.

Part (d): Determine the time until the first peak in response. Knowing this time, derive an expression for the peak overshoot.

$$
\begin{gathered}
t_{p e a k}=\frac{\pi}{w_{0} \sqrt{1-\zeta^{2}}} \\
y_{\text {peak }}=1-\frac{\exp \left(\pi \zeta / \sqrt{1-\zeta^{2}}\right)}{\sqrt{1-\zeta^{2}}} \sin (\pi+\theta)
\end{gathered}
$$

where $\theta=\cos ^{-1}(\zeta)$.
See Lectures notes from 10/21/2016 (Slides 5-8) for detailed derivation.

Part (e): Estimate the rise time, which is the time it takes from the onset of the step input until the time that the response first reaches a magnitude of one (the amplitude of the step input).
The step response can be written:

$$
y(t)=1-\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta w_{0} t} \sin \left(w_{d} t+\zeta\right)
$$

When $y=1$, then $\frac{1}{\sqrt{1-\zeta^{2}}} e^{-\zeta w_{0} t} \sin \left(w_{d} t+\theta\right)=0$
Thus $\sin \left(w_{d} t+\theta\right)=\sin \left(w_{0} \sqrt{\zeta^{2}-1} t+\cos ^{-1}(\zeta)\right)=0$

$$
t_{r}=\frac{\pi-\cos ^{-1}(\zeta)}{w_{0} \sqrt{\zeta^{2}-1}}
$$

## Problem 3

Show that $P=\int_{0}^{\infty} e^{A^{T} \tau} Q e^{A \tau} d \tau$ defines a Lyapunov function of the form $V=x^{T} P x$ given that Q is positive definite.
For fixed $x, V=x^{T} P x=\int_{0}^{\infty}\left(e^{A \tau} x\right)^{T} Q\left(e^{A \tau} x\right) d \tau$.
Since $Q$ is positive definite, then $\left(e^{A \tau} x\right)^{T} Q\left(e^{A \tau} x\right)>0 \forall x /\{0\} \in \mathbb{R}^{n}, \tau \in \mathbb{R}$
Therefore $V(x)>0$ and $V(0)=0$.

$$
\begin{gathered}
\dot{V}=\dot{x^{T}} P x+x^{T} P \dot{x}=x^{T}\left(A^{T} P+P A\right) x \\
A^{T} P+P A=\int_{0}^{\infty}\left(A^{T} e^{A^{T} \tau} x Q e^{A \tau}+e^{A^{T} \tau} x Q e^{A \tau} A\right) d \tau=\int_{0}^{\infty} \frac{d}{d \tau}\left(e^{A^{T} \tau} x Q e^{A \tau}\right) d \tau=-Q
\end{gathered}
$$

Therefore

$$
\dot{V}=x^{T}\left(A^{T} P+P A\right) x=-x^{T} Q x
$$

Since Q is positive definite, then $\dot{V}<0$ and we can conclude that $V=x^{T} P x$ defines a valid Lyapunov function.

## Problem 4

## Part (a):

$$
x[k+1]=A x[k]+B u[k] \quad y[k]=C x[k]+D u[k]
$$

Proof by induction.
Consider

$$
x[k]=A^{k} x[0]+\sum_{i=0}^{k-1} A^{k-1-i} B u[i]
$$

At the initial point,

$$
x[1]=A x[0]+B u[0]
$$

Now,

$$
\begin{aligned}
x[k+1] & =A^{k+1} x[0]+\sum_{i=0}^{k} A^{k-i} B u[i] \\
& =A\left(A^{k} x[0]\right)+\sum_{i=0}^{k-1} A^{k-i} B u[i]+B u[k] \\
& =A\left(A^{k} x[0]\right)+A \sum_{i=0}^{k-1} A^{k-1-i} B u[i]+B u[k] \\
& =A x[k]+B u[k]
\end{aligned}
$$

So,

$$
x[k]=A^{k} x[0]+\sum_{i=0}^{k-1} A^{k-1-i} B u[i]
$$

Then,

$$
y[k]=C x[k]+D u[k]=C A^{k} x[0]+\sum_{i=0}^{k-1} C A^{k-1-i} B u[i]+D u[k]
$$

## Part (b):

For checking asymptotic stability, assume $u=0$.
Then $x[k]=A^{k} x[0]$.
Consider the eigendecomposition of $A=V D V^{-1}$ where D is diagonal with eigenvalues on the diagonal and $V$ is an orthonormal matrix (represents a change of basis).

$$
x[k]=A^{k} x[0]=V D^{k} V^{-1} x[0]
$$

(if direction)
If eigenvalue of $A$ has magnitude strictly less than $1, D^{k} \rightarrow 0$ as $k \rightarrow \infty$ because $D$ is a diagonal matrix and its diagonal are the eigenvalues. Consequently, $x[k] \rightarrow 0$. Therefore, the system is asymptotically stable.
(only if direction)
If eigenvalue of $A$ has magnitude equal to $1, D^{k} \rightarrow D=I$ as $k \rightarrow \infty$. Consequently, $x[k]=x[0]$ for all $x[0] \neq 0$.

If eigenvalue of $A$ has magnitude greater than $1, D^{k} \rightarrow \infty$ as $k \rightarrow \infty$. Consequently, $x[k] \rightarrow \infty$ for all $x[0] \neq 0$.

Therefore, the systems are not asymptotically stable.

## Part (c):

Consider the input $u=e^{i w k}$

$$
y[k]=C A^{k} x[0]+\sum_{j=0}^{k-1} C A^{k-j-1} B e^{i w j}+D e^{i w k}
$$

If we assume asymptotic stability, then $C A^{k} x[0] \rightarrow 0$.

$$
\begin{gathered}
y[k]=C \sum_{j=0}^{k-1} A^{k-j-1} B e^{i w j}+D e^{i w k}=C \sum_{j=0}^{k-1} \frac{A^{k-j-1}}{e^{i w(k-j-1)}}\left(e^{i w(k-1)}\right)+D e^{i w k} \\
y[k]=C\left(I-\frac{A}{e^{i w}}\right)^{-1}\left(e^{i w}\right)^{-1} e^{i w k}+D e^{i w k}=\left[C\left(e^{i w} I-A\right)^{-1}+D\right] e^{i w k}
\end{gathered}
$$

Thus the response to $e^{i w k}$ is:

$$
y[k]=\left[C\left(e^{i w} I-A\right)^{-1}+D\right] e^{i w k}
$$

Thus by linearity, the response to $\sin (w k)=\frac{e^{i w k}-e^{-i w k}}{2 i}$ will be:

$$
y[k]=\frac{\left[C\left(e^{i w} I-A\right)^{-1}+D\right] e^{i w k}-\left[C\left(e^{-i w} I-A\right)^{-1}+D\right] e^{-i w k}}{2 i}
$$

## Part (d):

As in the continuous time case, we let $z=x-x_{e}, v=u-u_{e}$, and $w=y-h\left(x_{e}, u_{e}\right)$. Expanding the dynamics in a Taylor series, we have:

$$
\begin{gathered}
x[k+1]=f\left(x_{e}, u_{e}\right)+\frac{d f}{d x}\left(x[k]-x_{e}\right)+\frac{d f}{d u}\left(u[k]-u_{e}\right)+\text { h.o.t. } \\
y[k]=h\left(x_{e}, u_{e}\right)+\frac{d h}{d x}\left(x[k]-x_{e}\right)+\frac{d h}{d u}\left(u[k]-u_{e}\right)+\text { h.o.t. }
\end{gathered}
$$

The resulting linearized system is obtained by assuming the higher order terms can be neglected and the dynamics become:

$$
z[k+1]=A z[k]+B v[k] \quad w[k]=C z[k]+D v[k]
$$

where

$$
A=\left.\frac{d f}{d x}\right|_{\left(x_{e}, u_{e}\right)} \quad B=\left.\frac{d f}{d u}\right|_{\left(x_{e}, u_{e}\right)} \quad C=\left.\frac{d h}{d x}\right|_{\left(x_{e}, u_{e}\right)} \quad D=\left.\frac{d h}{d u}\right|_{\left(x_{e}, u_{e}\right)}
$$

