ME/CS 133(a): Homework \#1

(Due Wednesday, October 17, 2018)

Problem 1: (10 points) Let \mathcal{F}_{1} denote a fixed reference frame in the plane, with orthonormal basis vectors \vec{x}_{1} and \vec{y}_{1}. Similarly, consider a second reference frame \mathcal{F}_{2} with orthonormal basis vectors \vec{x}_{2} and \vec{y}_{2}. Let $d_{12}=\left[\begin{array}{ll}x & y\end{array}\right]^{T}$ be the vector pointing from the origin of \mathcal{F}_{1} to the origin of \mathcal{F}_{2}. Let θ_{12} denote the relative orientation of the two reference frames: θ_{12} is the angle between \vec{x}_{1} and \vec{x}_{2} (using the right hand rule, or RHR).

Let ${ }^{2} \vec{v}=\left[\begin{array}{ll}{ }^{2} v_{x} & { }^{2} v_{y}\end{array}\right]^{T}$ denote the coordinates of a point, P, as seen by an observer in \mathcal{F}_{2}. In class we developed a formula for the coordinate transformation of P to its representation in \mathcal{F}_{1} :

$$
\begin{equation*}
{ }^{1} \vec{v}=\vec{d}_{12}+R\left(\theta_{12}\right)^{2} \vec{v} \tag{1}
\end{equation*}
$$

where $R\left(\theta_{12}\right)$ is the 2×2 rotation matrix:

$$
R\left(\theta_{12}\right)=\left[\begin{array}{cc}
\cos \theta_{12} & -\sin \theta_{12} \\
\sin \theta_{12} & \cos \theta_{12}
\end{array}\right]
$$

For computational purposes, it is sometimes convenient to use different representations of coordinates, vectors, and rotations. This problem considers the use of complex numbers.

Let \vec{w} be a 2×1 vector $\vec{w}=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]^{T}$ in the plane. We can represent \vec{w} as a complex number: $\tilde{w}=w_{1}+i w_{2}$ where i is the complex number such that $i \cdot i=-1$. Show that if ${ }^{2} \tilde{v}$ is the complex representation of ${ }^{2} \vec{v}$, and \tilde{d}_{12} is the complex representation of \vec{d}_{12}, then the complex representation of the coordinate transform in Equation (1) is:

$$
{ }^{1} \tilde{v}=\tilde{d}_{12}+e^{i \theta_{12} 2} \tilde{v}
$$

Problem 2: (10 points) Every planar rigid body displacement is equivalent to a rotation about a unique point in the plane, known as the pole (see Figure 1).

Let A be a fixed reference frame. A rigid body, L, which has local frame B attached to it, is located relative to reference frame A by $D_{1}=\left(\vec{d}_{01}, R_{01},\right)$. Body L moves to position C, where the displacement to location C, as measured by an observer in frame B, is given by $D_{2}=\left(\vec{d}_{12}, R_{12}\right)$. Where is the pole of the body displacement from position B to position C , as a function of $R_{01}, R_{12}, \vec{d}_{01}$, and \vec{d}_{12} ?
a. As measured in Frame A
b. As measured in Frame B
c. As measured in Frame C

Figure 1: Geometry of planar displacement

Problem 3: (5 points) In the above problem, suppose $D_{1}=(x, y, \theta)=\left(2.0,2.0,20.0^{\circ}\right)$ and $D_{2}=(x, y, \theta)=\left(3.0,2.0,45^{\circ}\right)$. Where is the pole of the displacement from B to C in this case?

Problem 4: (15 points) Using the set up of Problem 2, pick a coordinate system whose origin is located at the pole of the displacement, and show that in this coordinate system, the displacement of the body from B to C is a pure rotation. That is, in that coordinate frame, the displacement should take the form $D=($ displacment vector, rotation matrix $)=(\overrightarrow{0}, R)$, where R is a 2×2 rotation matrix.

Problem 5: (15 points) A planar reflection is an operation wherein one "reflects" all of the particles in a body across a line (see Figure 2). Show (intuitively) that reflections "preserve length." That is, reflections do not alter the distance relationship between particles in a rigid body. Can any planar displacement be equivalently performed by a reflection?

Figure 2: Geometry of Planar Rigid Body Reflection

Problem 6: (15 points) Do parts (a,b,c) of Problem 10 in Chapter 2 of the the Murray, Li, Sastry textbook. This problem is located on page 75-76.

