ME/CS 133(a): Homework #1

(Due Wednesday, October 17, 2018)

Problem 1: (10 points) Let \mathcal{F}_1 denote a fixed reference frame in the plane, with orthonormal basis vectors \vec{x}_1 and \vec{y}_1 . Similarly, consider a second reference frame \mathcal{F}_2 with orthonormal basis vectors \vec{x}_2 and \vec{y}_2 . Let $d_{12} = \begin{bmatrix} x & y \end{bmatrix}^T$ be the vector pointing from the origin of \mathcal{F}_1 to the origin of \mathcal{F}_2 . Let θ_{12} denote the relative orientation of the two reference frames: θ_{12} is the angle between \vec{x}_1 and \vec{x}_2 (using the right hand rule, or RHR).

Let ${}^{2}\vec{v} = \begin{bmatrix} {}^{2}v_{x} & {}^{2}v_{y} \end{bmatrix}^{T}$ denote the coordinates of a point, P, as seen by an observer in \mathcal{F}_{2} . In class we developed a formula for the coordinate transformation of P to its representation in \mathcal{F}_{1} :

$${}^{1}\vec{v} = \vec{d}_{12} + R(\theta_{12}) {}^{2}\vec{v} \tag{1}$$

where $R(\theta_{12})$ is the 2 × 2 rotation matrix:

$$R(\theta_{12}) = \begin{bmatrix} \cos \theta_{12} & -\sin \theta_{12} \\ \sin \theta_{12} & \cos \theta_{12} \end{bmatrix}$$

For computational purposes, it is sometimes convenient to use different representations of coordinates, vectors, and rotations. This problem considers the use of complex numbers.

Let \vec{w} be a 2 × 1 vector $\vec{w} = \begin{bmatrix} w_1 & w_2 \end{bmatrix}^T$ in the plane. We can represent \vec{w} as a complex number: $\tilde{w} = w_1 + iw_2$ where *i* is the complex number such that $i \cdot i = -1$. Show that if ${}^2\tilde{v}$ is the complex representation of ${}^2\vec{v}$, and \tilde{d}_{12} is the complex representation of \vec{d}_{12} , then the complex representation of the coordinate transform in Equation (1) is:

$${}^1\tilde{v} = \tilde{d}_{12} + e^{i\theta_{12}} {}^2\tilde{v}$$

Problem 2: (10 points) Every planar rigid body displacement is *equivalent* to a rotation about a unique point in the plane, known as the pole (see Figure 1).

Let A be a fixed reference frame. A rigid body, L, which has local frame B attached to it, is located relative to reference frame A by $D_1 = (\vec{d}_{01}, R_{01},)$. Body L moves to position C, where the displacement to location C, as measured by an observer in frame B, is given by $D_2 = (\vec{d}_{12}, R_{12})$. Where is the *pole* of the body displacement from position B to position C, as a function of R_{01} , R_{12} , \vec{d}_{01} , and \vec{d}_{12} ?

- a. As measured in Frame A
- b. As measured in Frame B
- c. As measured in Frame C

Figure 1: Geometry of planar displacement

Problem 3: (5 points) In the above problem, suppose $D_1 = (x, y, \theta) = (2.0, 2.0, 20.0^{\circ})$ and $D_2 = (x, y, \theta) = (3.0, 2.0, 45^{\circ})$. Where is the pole of the displacement from B to C in this case?

Problem 4: (15 points) Using the set up of Problem 2, pick a coordinate system whose origin is located at the pole of the displacement, and show that in this coordinate system, the displacement of the body from B to C is a pure rotation. That is, in that coordinate frame, the displacement should take the form $D = (\text{displacement vector, rotation matrix}) = (\vec{0}, R)$, where R is a 2 × 2 rotation matrix.

Problem 5: (15 points) A *planar reflection* is an operation wherein one "reflects" all of the particles in a body across a line (see Figure 2). Show (intuitively) that reflections "preserve length." That is, reflections do not alter the distance relationship between particles in a rigid body. Can any planar displacement be equivalently performed by a reflection?

Figure 2: Geometry of Planar Rigid Body Reflection

Problem 6: (15 points) Do parts (a,b,c) of Problem 10 in Chapter 2 of the Murray, Li, Sastry textbook. This problem is located on page 75-76.