
CDS 101/110: Lecture 3.1
Linear Systems

Goals for Today:
• Revist and motivate linear time-invariant system models:
• Summarize properties, examples, and tools 

− Convolution equation describing solution in response to an input
− Step response, impulse response
− Frequency response

• Characterize performance of linear systems

Reading: 
• Åström and Murray, FBS-2e, Ch 6.1-6.3
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Why are Linear Systems Important?
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Many important examples
• Mechanical Systems



Why are Linear Systems Important?

3



Many important examples
• Electronic circuits

− Especially true after feedback
− Frequency response is key 

performance specification

Why are Linear Systems Important?
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Why are Linear Systems Important?
Many important tools

• Frequency and step response, 
– Traditional tools of control theory
– Developed in 1930’s at Bell Labs

• Classical control design toolbox
– Nyquist plots, gain/phase margin
– Loop shaping

• Optimal control and estimators
– Linear quadratic regulators 
– Kalman estimators

• Robust control design
– H1 control design
– µ analysis for structured 

uncertainty
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Many important examples
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Solutions of Linear Time Invariant Systems: 
“Modes”

Linear Time Invariant (LTI) System:

• If Linear System, input u(t) leads to output y(t)
• If u(t+T) leads to output y(t+T), the system is time invariant 

• Matrix LTI system, with no input

• Let 𝜆𝜆𝑖𝑖 and 𝑣𝑣𝑖𝑖 be eigenvalue/eigenvector of 𝐴𝐴.  Then:

𝑒𝑒𝐴𝐴𝐴𝐴𝑣𝑣𝑖𝑖 = 𝐼𝐼 +
𝑡𝑡
1!

𝐴𝐴 +
𝑡𝑡2

2!
𝐴𝐴2 + ⋯ 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 +

𝑡𝑡
1!

𝜆𝜆𝑖𝑖𝑣𝑣𝑖𝑖 +
𝑡𝑡^2
2!

𝜆𝜆𝑖𝑖
2𝑣𝑣𝑖𝑖 + ⋯

= 𝑒𝑒𝜆𝜆𝑖𝑖𝐴𝐴 𝑣𝑣𝑖𝑖

• If n distinct eigenvalues, then 𝑥𝑥 0 = 𝛼𝛼1𝑣𝑣1 + 𝛼𝛼2𝑣𝑣2 + ⋯ + 𝛼𝛼𝑛𝑛𝑣𝑣𝑛𝑛, and 

𝑒𝑒𝐴𝐴𝐴𝐴𝑥𝑥 0 = 𝛼𝛼1𝑒𝑒𝜆𝜆1𝐴𝐴𝑣𝑣1 + 𝛼𝛼2𝑒𝑒𝜆𝜆2𝐴𝐴𝑣𝑣2 + ⋯ + 𝛼𝛼𝑛𝑛𝑒𝑒𝜆𝜆𝑛𝑛𝐴𝐴𝑣𝑣𝑛𝑛
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The Convolution Integral: Step 1
Let 𝐻𝐻 𝑡𝑡 denote the response of a LTI system to a unit step input at t=0.

– Assuming the system starts at Equilibrium 

The response to the steps are:
– First step input at time t=0:       𝐻𝐻 𝑡𝑡 − 𝑡𝑡0 𝑢𝑢 𝑡𝑡0

– Second step input at time 𝑡𝑡1:    𝐻𝐻 𝑡𝑡 − 𝑡𝑡1 (𝑢𝑢 𝑡𝑡1 − 𝑢𝑢 𝑡𝑡0 )
– Third step input at time 𝑡𝑡2: 𝐻𝐻 𝑡𝑡 − 𝑡𝑡2 (𝑢𝑢 𝑡𝑡2 − 𝑢𝑢 𝑡𝑡1 )

By linearity, we can add the response
𝑦𝑦 𝑡𝑡 = 𝐻𝐻 𝑡𝑡 − 𝑡𝑡0 𝑢𝑢 𝑡𝑡0 + 𝐻𝐻 𝑡𝑡 − 𝑡𝑡1 𝑢𝑢 𝑡𝑡1 − 𝑢𝑢 𝑡𝑡0 + …

= 𝐻𝐻 𝑡𝑡 − 𝑡𝑡0 − 𝐻𝐻 𝑡𝑡 − 𝑡𝑡1 𝑢𝑢 𝑡𝑡0 + 𝐻𝐻 𝑡𝑡 − 𝑡𝑡1 − 𝐻𝐻 𝑡𝑡 − 𝑡𝑡2 𝑢𝑢(𝑡𝑡1) + …   

= �
𝑛𝑛=0

𝐴𝐴0<𝐴𝐴
𝐻𝐻 𝑡𝑡 − 𝑡𝑡𝑛𝑛 − 𝐻𝐻 𝑡𝑡 − 𝑡𝑡𝑛𝑛+1

𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛
𝑢𝑢(𝑡𝑡𝑛𝑛)(𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛)

Taking the limit as 𝑡𝑡𝑛𝑛+1 − 𝑡𝑡𝑛𝑛 → 0

𝑦𝑦 𝑡𝑡 = �
0

𝐴𝐴
𝐻𝐻′ 𝑡𝑡 − 𝜏𝜏 𝑢𝑢 𝜏𝜏 𝑑𝑑𝜏𝜏
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• What is the “impulse response” due to u(t)=δ(t)?
take limit as dt → 0 but keep unit area

𝑢𝑢 𝑡𝑡 = 𝑝𝑝𝜀𝜀 𝑡𝑡 = �
0 𝑡𝑡 < 0

1/𝜀𝜀 0 ≤ 𝑡𝑡 < 𝜀𝜀
0 𝑡𝑡 ≥ 𝜀𝜀

𝛿𝛿 𝑡𝑡 = lim𝜀𝜀→0 𝑝𝑝𝜀𝜀(𝑡𝑡)

• Apply this unit impulse to the system (with x(0)=0):

𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑒𝑒𝐴𝐴𝐴𝐴𝐵𝐵

Impulse Response
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Response to inputs: Convolution

• Impulse response, h(t) = CeAtB
– Response to input “impulse”
– Equivalent to “Green’s function”

• Linearity ⇒ compose response to arbitrary u(t) using convolution
– Decompose input into “sum” of

shifted impulse functions
– Compute impulse response for each
– “Sum” impulse response to find y(t)
– Take limit as dt→ 0
• Complete solution: use integral instead of “sum”
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homogeneous

• linear with respect to initial 
condition and input

• 2X input ⇒ 2X output when 
x(0) = 0

Convolution Theorem



MATLAB Tools for Linear Systems

• Other MATLAB commands
– gensig, square, sawtooth – produce signals of diff. types
– step, impulse, initial, lsim – time domain analysis
– bode, freqresp, evalfr – frequency domain analysis
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A = [-1 1; 0 -1];  B = [0; 1];  

C = [1 0]; D = [0];

x0 = [1; 0.5];

sys = ss(A,B,C,D);

initial(sys, x0);

impulse(sys);

t = 0:0.1:10;

u = 0.2*sin(5*t) + cos(2*t);

lsim(sys, u, t, x0);
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MATLAB Tools for Phase Space

�̇�𝑥1 = −𝑥𝑥1 − 2𝑥𝑥2𝑥𝑥1
2𝑥𝑥2

�̇�𝑥2 = −𝑥𝑥1 − 𝑥𝑥2

System Equations MATLAB CODE
[x1, x2]=meshgrid(-0.5:0.05:0.5, -0.5:0.05:0.5);
x1dot=-x1 - 2*x2*x1^2 + x2;
x2dot=-x1-x2;
quiver(x1,x2,x1dot,x2dot);
x
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function my_phases(IC)
hold on

[~,X]=ode45(@EOM,[0,50],IC);
u=X(:,1);
w=X(:,2);
plot(u,w,'r');

xlabel('u')
ylabel('w')
grid
end

function dX=EOM(t,X)
dX=zeros(2,1);
x1=X(1);
x2=X(2);
x1dot=-x1 - 2*x2*x1^2 + x2;
x2dot=-x1-x2;
dX=[x1dot;x2dot];
end

MATLAB Tools for Phase Space



Transient Steady State

Mass spring system (L1.2)

Input/Output Performance
• How does system respond to

changes in input values?
– Transient response:
– Steady state response:

• Characterize response in terms of
– Impulse response
– Step response
– Frequency response
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Response to inputs,
Steady State 

(if constant inputs)



Step Response
• Output characteristics in response to a “step” input

– Rise time: time required to move from 
5% to 95% of final value

– Overshoot: ratio between amplitude of 
first peak and steady state value

– Settling time: time required to remain 
w/in p% (usually 2%) of final value

– Steady state value: final value at t = 1

14Time (sec.)
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Frequency Response
• Measure steady state response of system to sinusoidal input
– Example: audio amplifier – would like consistent 

(“flat”) amplification between 20 Hz & 20,000 Hz 
– Individual sinusoids are good test signals for 

measuring performance in many systems 

• Approach: plot input and output, measure relative amplitude and phase
– Use MATLAB or SIMULINK to generate

response of system to sinusoidal output
– Gain = Ay/Au

– Phase = 2π ∙ ΔT/T

• May not work for nonlinear systems
– System nonlinearities can cause

harmonics to appear in the output
– Amplitude and phase may not be well-defined
– For linear systems, frequency response is always well defined
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Computing Frequency Responses
• Technique #1: plot input and output, measure relative amplitude and phase
– Generate response of system to 

sinusoidal output
– Gain = Ay/Au

– Phase = 2π ∙ ΔT/T
– For linear system, gain and phase 

don’t depend on the input amplitude

• Technique #2 (linear systems): use bode (or freqresp) command
– Assumes linear dynamics in state

space form:

– Gain plotted on log-log scale
• dB = 20 log10 (gain)

– Phase plotted on linear-log scale
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Calculating Frequency Response from 
convolution equation

• Convolution equation describes response to any input; use this to look at 
response to sinusoidal input:

Transient (decays if stable)

u(t)

Ratio of response/input
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• Many important  examples: 
• Insight to response for higher orders (eigenvalues of A are either real or complex)

– Exception is non-diagonalizable A (non-trivial Jordan form)

– Analytical formulas exist for 
overshoot, rise time, settling time, etc

– Will study more next week

Second Order Systems
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Spring Mass System
Eigenvalues of A:
• For zero damping,  jω1 and jω2

• ω1 and ω2 correspond frequency 
response peaks

• The eigenvectors for these eigenvalues 
give the mode shape:

– In-phase motion for lower freq. 
– Out-of phase motion for higher freq. 
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Summary: Linear Systems

• Properties of linear systems
– Linearity with respect to initial condition 

and inputs
– Stability characterized by eigenvalues
– Many applications and tools available
– Provide local description for nonlinear 

systems
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Example: Inverted Pendulum on a Cart

 State:
 Input: u = F
 Output: y = x
 Linearize according to previous 

formula around  = 0f

x



m

M



Second Order Systems
• Many important  examples: 
• Response of 1st and 2nd order systems -> insight to response for higher orders 

(eigenvalues of A are either real or complex)
– Exception is non-diagonalizable A (non-trivial Jordan form)

– Analytical formulas exist for 
overshoot, rise time, settling time, etc

– Will study more next week
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Important class of systems in many applications areas

 Analytical formulas exist for overshoot, rise time, settling time, etc
 Will study second order systems characteristics in more detail next week
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Second Order Systems



0 5 10 15 20 250
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

time (sec)

y

T=2�/ 0


	CDS 101/110: Lecture 3.1� Linear Systems
	Why are Linear Systems Important?
	Why are Linear Systems Important?
	Why are Linear Systems Important?
	Why are Linear Systems Important?
	Solutions of Linear Time Invariant Systems: �“Modes”
	The Convolution Integral: Step 1
	Impulse Response
	Response to inputs: Convolution
	MATLAB Tools for Linear Systems
	Slide Number 11
	Slide Number 12
	Input/Output Performance
	Step Response
	Frequency Response
	Computing Frequency Responses
	Calculating Frequency Response from convolution equation
	Second Order Systems
	Spring Mass System
	Summary: Linear Systems
	Example: Inverted Pendulum on a Cart
	Second Order Systems
	Second Order Systems

