ME/CS 133(a): Solution to Homework \#2

Problem 1:(10 Points, Problem 4(a,b) in Chapter 2 of MLS).

Part (a): Let's assume that the statement in part (b) of the problem is true. Let \vec{w} be a 3×1 vector and let \vec{v} be any 3×1 vector. Then:

$$
\begin{aligned}
\left(R \hat{w} R^{T}\right) \vec{v} & =R \hat{w}\left(R^{T} \vec{v}\right) \\
& =R\left(\vec{w} \times\left(R^{T} \vec{v}\right)\right. \\
& =(R \vec{w}) \times\left(R R^{T} \vec{v}\right) \\
& =(R \vec{w}) \times \vec{v} \\
& =(R \vec{w}) \vec{v}
\end{aligned}
$$

Since this must be true for any vector \vec{v}, then $R \hat{w} R^{T}=(R \vec{w})^{-}$.
Part (b): We can now assume that part (a) holds.

$$
\begin{aligned}
(R \vec{v}) \times(R \vec{w}) & =\widehat{(R \vec{v})}(R \vec{w}) \\
& =\left(R \hat{v} R^{T}\right)(R \vec{w}) \\
& =R \hat{v} R^{T} R \vec{w} \\
& =R(\hat{v} \vec{w}) \\
& =R(\vec{v} \times \vec{w})
\end{aligned}
$$

Problem 2: (15 points, Problem 5 of chapter 2 in the MLS text).
Part (a): This result was derived in class. Alternatively, you could show that $A=(I-$ $\hat{a})^{-1}(I+\hat{a})$ is a matrix in $S O(3)$ for 3×3 skew symmetric matrix \hat{a} by showing that A is orthogonal and that $\operatorname{det}(A)=+1$. Let us first show that A is orthogonal.

$$
\begin{aligned}
A A^{T} & =(I-\hat{a})^{-1}(I+\hat{a})\left((I-\hat{a})^{-1}(I+\hat{a})\right)^{T}=(I-\hat{a})^{-1}(I+\hat{a})(I-\hat{a})(I+\hat{a})^{-1} \\
& =(I-\hat{a})(I+\hat{a})^{-1}(I-\hat{a})^{-1}(I+\hat{a}) .
\end{aligned}
$$

Note that $(I+\hat{a})^{-1}(I-\hat{a})^{-1}=((I-\hat{a})(I+\hat{a}))^{-1}=\left(I-\hat{a}^{2}\right)^{-1}=((I+\hat{a})(I-\hat{a}))^{-1}=$ $(I-\hat{a})^{-1}(I+\hat{a})^{-1}$ Therefore:

$$
A A^{T}=(I-\hat{a})(I+\hat{a})^{-1}(I-\hat{a})^{-1}(I+\hat{a})=(I-\hat{a})(I-\hat{a})^{-1}(I+\hat{a})^{-1}(I+\hat{a})=I .
$$

We just showed that $A \in \mathcal{O}(3)$. The orthogonal group has two subcomponents: $\operatorname{det}(A)=+1$ and $\operatorname{det}(A)=-1$. All of the matrices in each component are continuously deformable into another matrix in the respective component. In the limit that $\vec{a} \rightarrow 0, \hat{a} \rightarrow 0$. In that case, $A=I$, which has determine of +1 . Hence, matrices with $\vec{a} \neq 0$ must in the same component as matrices with $\vec{a}=0$, which is the component consisting of matrices in $S O(3)$.

Part (b): This is a calculation. The hard part is to derive an expression for $(I-\hat{a})^{-1}$:

$$
(I-\hat{a})^{-1}=\frac{1}{1+\|a\|^{2}}\left[\begin{array}{ccc}
\left(1+a_{x}^{2}\right) & \left(-a_{z}+a_{x} a_{y}\right) & \left(a_{y}+a_{x} a_{z}\right) \\
\left(a_{z}+a_{x} a_{y}\right) & \left(1+a_{y}^{2}\right) & \left(-a_{x}+a_{y} a_{z}\right) \\
\left(-a_{y}+a_{x} a_{z}\right) & \left(a_{x}+a_{y} a_{z}\right) & \left(1+a_{z}^{2}\right)
\end{array}\right]
$$

where $\vec{a}=\left[\begin{array}{lll}a_{x} & a_{y} & a_{z}\end{array}\right]^{T}$.
Part (c): There are two ways to solve this. The simplest way is to use the result of part 5(b) quoted in the text:

$$
R=\frac{1}{1+\|a\|^{2}}\left[\begin{array}{ccc}
1+a_{1}^{2}-a_{2}^{2}-a_{3}^{2} & 2\left(a_{1} a_{2}-a_{3}\right) & 2\left(a_{1} a_{3}+a_{2}\right) \tag{1}\\
2\left(a_{1} a_{2}+a_{3}\right) & 1-a_{1}^{2}+a_{2}^{2}-a_{3}^{2} & 2\left(a_{2} a_{3}-a_{1}\right) \\
2\left(a_{1} a_{3}-a_{2}\right) & 2\left(a_{2} a_{3}+a_{1}\right) & 1-a_{1}^{2}-a_{2}^{2}+a_{3}^{2}
\end{array}\right]
$$

where $\|a\|^{2}$ is shorthand notation for $\|a\|^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$. Noting that

$$
\operatorname{trace}(R)=\frac{3-\|a\|^{2}}{1+\|a\|^{2}} \Rightarrow\|a\|^{2}=\frac{3-\operatorname{trace}(R)}{1+\operatorname{trace}(R)}=\frac{3-r_{11}-r_{22}-r_{33}}{1+r_{11}+r_{22}+r_{33}}
$$

so that an expression for $\|a\|^{2}$ is known, simple algebraic manipulation of the off-diagonal term of R yield

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\frac{1+\|a\|^{2}}{4}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
$$

If you didn't use the results of $5(\mathrm{~b})$ in the text, then you would have started with Cayley's formula $R=(I-\hat{a})^{-1}(I+\hat{a})$ and derived Equation (1).

Problem 3: (5 points, Problem 8(b) of chapter 2 in the MLS text).

$$
\begin{aligned}
e^{g \Lambda g^{-1}} & =I+\frac{1}{1!} g \Lambda g^{-1}+\frac{1}{2!}\left(g \Lambda g^{-1}\right)^{2}+\frac{1}{3!}\left(g \Lambda g^{-1}\right)^{3}+\cdots \\
& =I+\frac{1}{1!} g \Lambda g^{-1}+\frac{1}{2!}\left(g \Lambda^{2} g^{-1}\right)+\frac{1}{3!}\left(g \Lambda^{3} g^{-1}\right)+\cdots \\
& =g\left(I+\frac{1}{1!} \Lambda+\frac{1}{2!} \Lambda^{2}+\frac{1}{3!} \Lambda^{3}+\cdots\right) g^{-1} \\
& =g e^{\Lambda} g^{-1}
\end{aligned}
$$

Problem 4: (15 points, Euler Angles)
Let Z-X-Y Euler angles be denoted by ψ, ϕ, and γ.

- Part (a): Develop an expression for the rotation matrix that describes the Z-X-Y rotation as a function of the angles ψ, ϕ, and γ.
Rotation about the z-axis by angle ψ can be represented by a rotation matrix whose form can be determined from the Rodriguez Equation:

$$
\operatorname{Rot}(\vec{z}, \psi)=I+\sin \psi \hat{z}+(1-\cos \psi) \hat{z}^{2}=\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Using the Rodriguez equation, the rotations about the y-axis and x-axis can be similarly found as:

$$
\operatorname{Rot}(\vec{x}, \phi)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right] \quad \operatorname{Rot}(\vec{y}, \gamma)=\left[\begin{array}{ccc}
\cos \gamma & 0 & \sin \gamma \\
0 & 1 & 0 \\
-\sin \gamma & 0 & \cos \gamma
\end{array}\right] .
$$

Multiplying the matrices yields the result:

$$
\begin{aligned}
R(\psi, \phi, \gamma) & =\operatorname{Rot}(\vec{z}, \psi) \operatorname{Rot}(\vec{x}, \phi) \operatorname{Rot}(\vec{y}, \gamma) \\
& =\left[\begin{array}{cccc}
(c \psi c \gamma-s \psi s \phi s \gamma) & -s \psi c \phi & (c \psi s \gamma & (c \psi s \gamma+s \psi s \phi c \gamma) \\
(s \psi c \gamma+c \psi s \phi s \gamma) & c \psi c \phi & (s \psi s \gamma-c \psi s \phi c \gamma) & (2) \\
-c \phi s \gamma & s \phi & c \phi c \gamma &
\end{array}\right]
\end{aligned}
$$

where $c \phi$ and $s \phi$ are respectively shorthand notation for $\cos \phi$ and $\sin \phi$, etc.

- Part (b): Given a rotation matrix of the form:

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \tag{3}\\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

compute the angles ψ, ϕ, and γ as a function of the $r_{i j}$.
Direct observation of the matrices in Equations (2) and (3) show that:

$$
\sin \phi=r_{32} .
$$

Because $\sin (\pi-\phi)=\sin \phi$, there are two solutions to this equation: $\phi_{1}=\sin ^{-1}\left(r_{32}\right)$, and $\phi_{2}=\pi-\phi_{1}$. Similar matchings of the matrix components yield:

$$
\begin{aligned}
& \psi=\operatorname{Atan} 2\left[\frac{r_{22}}{\cos \phi}, \frac{-r_{12}}{\cos \phi}\right] \\
& \gamma=\operatorname{Atan} 2\left[\frac{r_{33}}{\cos \phi}, \frac{-r_{31}}{\cos \phi}\right]
\end{aligned}
$$

where the value ϕ_{1} or ϕ_{2} is used consistently

Problem 5: (Problem 11(a,b) in Chapter 2 of the MLS text).
Part (a): Recall that the matrix exponential of a twist, $\hat{\xi}$, is:

$$
e^{\phi \hat{\xi}}=I+\frac{\phi}{1!} \hat{\xi}+\frac{\phi^{2}}{2!} \hat{\xi}^{2}+\frac{\phi^{3}}{3!} \hat{\xi}^{3}+\cdots
$$

First, let's consider the case of $\xi=(v, \omega)$, with $\omega=0$. If:

$$
\hat{\xi}=\left[\begin{array}{ccc}
0 & 0 & v_{x} \\
0 & 0 & v_{y} \\
0 & 0 & 0
\end{array}\right]
$$

then $\hat{\xi}^{2}=0$. Thus

$$
e^{\phi \hat{\xi}}=\left[\begin{array}{ccc}
1 & 0 & \phi v_{x} \\
0 & 1 & \phi v_{y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cc}
I & \vec{v} \phi \\
\overrightarrow{0}^{t} & 1
\end{array}\right]
$$

To compute the exponential for the more general case in which $\omega \neq 0$, let us assume that $\|\omega\|=1$. In this case, note that $\hat{\omega}^{2}=-I$, where I is the 2×2 identity matrix. It is easiest if we choose a different coordinate system in which to perform the calculations. Let

$$
\hat{\xi}=\left[\begin{array}{ccc}
0 & -\omega & v_{x} \\
\omega & 0 & v_{y} \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\hat{\omega} & \vec{v} \\
\overrightarrow{0}^{T} & 0
\end{array}\right]
$$

Let

$$
g=\left[\begin{array}{cc}
I & \hat{\omega} \vec{v} \\
\overrightarrow{0}^{T} & 1
\end{array}\right]
$$

Let is define a new twist, $\hat{\xi}^{\prime}$:

$$
\begin{aligned}
\hat{\xi}^{\prime} & =g^{-1} \hat{\xi} g \\
& =\left[\begin{array}{cc}
I & -\hat{\omega} \vec{v} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\hat{\omega} & \vec{v} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
I & \hat{\omega} \vec{v} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\hat{\omega} & \left(\hat{\omega}^{2} \vec{v}+\vec{v}\right) \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
\hat{\omega} & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

where we made use of the identity $\hat{\omega}^{2}=-I$. That is, we have chosen a coordinate system in which $\hat{\xi}^{\prime}$ corresponds to a pure rotation. Thus,

$$
e^{\phi \hat{\xi}^{\prime}}=\left[\begin{array}{cc}
e^{\phi \hat{\omega}} & 0 \\
0 & 1
\end{array}\right] .
$$

Using Eq. (2.35) on page 42 of the MLS text:

$$
e^{\phi \hat{\xi}}=g e^{\phi \hat{\xi}^{\prime}} g^{-1}=\left[\begin{array}{cc}
e^{\phi \hat{\omega}} & \left(I-e^{\phi \hat{\omega}} \hat{\omega} \vec{v} \phi\right. \\
0 & 1
\end{array}\right]
$$

which is clearly an element of $S E(2)$.
$\operatorname{Part}(\mathbf{b}):$ It is easy to see from part (a) that the twist $\xi=\left(v_{x}, v_{y}, 0\right)^{T}$ maps directly to the planar translation $\left(v_{x}, v_{y}\right)$.

The twist corresponding to pure rotation about a point $\vec{q}=\left(q_{x}, q_{y}\right)$ can be thought of as the Ad-transformation of a twist, $\xi^{\prime}=(0,0, \omega)$, which is pure rotation, by a transformation, g, which is pure translation by \vec{q} :

$$
\begin{equation*}
\xi=\operatorname{Ad}_{h} \xi^{\prime}=\left(h \hat{\xi}^{\prime} h^{-1}\right)^{\vee} \tag{4}
\end{equation*}
$$

where

$$
h=\left[\begin{array}{ll}
I & \vec{q} \\
0 & 1
\end{array}\right] \quad \text { and } \quad \hat{x i}^{\prime}=\left[\begin{array}{cc}
\hat{\overrightarrow{0}} & 0 \\
\overrightarrow{0}^{T} & 0
\end{array}\right] .
$$

Expanding Eq. (4) gives:

$$
\xi=\left(h \hat{\xi}^{\prime} h^{-1}\right)^{\vee}=\left[\begin{array}{cc}
\hat{\omega} & -\hat{\omega} \vec{q} \\
\overrightarrow{0}^{T} & 0
\end{array}\right]^{\vee}=\left[\begin{array}{c}
q_{y} \\
-q_{x} \\
1
\end{array}\right]
$$

assuming $\omega=1$.

