
ME/CS 133(a): Solution to Homework #2

Problem 1:(10 Points, Problem 4(a,b) in Chapter 2 of MLS).

Part (a): Let’s assume that the statement in part (b) of the problem is true. Let ~w be a
3× 1 vector and let ~v be any 3× 1 vector. Then:

(RŵRT )~v = Rŵ(RT~v)
= R(~w × (RT~v))
= (R~w)× (RRT~v)
= (R~w)× ~v
= (̂R~w)~v

Since this must be true for any vector ~v, then RŵRT = (R~w)ˆ.

Part (b): We can now assume that part (a) holds.

(R~v)× (R~w) = (̂R~v)(R~w)
= (Rv̂RT )(R~w)
= Rv̂RTR~w
= R(v̂ ~w)
= R(~v × ~w)

Problem 2: (15 points, Problem 5 of chapter 2 in the MLS text).

Part (a): This result was derived in class. Alternatively, you could show that A = (I −
â)−1(I + â) is a matrix in SO(3) for 3 × 3 skew symmetric matrix â by showing that A is
orthogonal and that det(A) = +1. Let us first show that A is orthogonal.

AAT = (I − â)−1(I + â)
(
(I − â)−1(I + â)

)T
= (I − â)−1(I + â)(I − â)(I + â)−1

= (I − â)(I + â)−1(I − â)−1(I + â) .

Note that (I + â)−1(I − â)−1 =
(
(I − â)(I + â)

)−1
= (I − â2)−1 =

(
(I + â)(I − â)

)−1
=

(I − â)−1(I + â)−1 Therefore:

AAT = (I − â)(I + â)−1(I − â)−1(I + â) = (I − â)(I − â)−1(I + â)−1(I + â) = I .

We just showed that A ∈ O(3). The orthogonal group has two subcomponents: det(A) = +1
and det(A) = −1. All of the matrices in each component are continuously deformable into
another matrix in the respective component. In the limit that ~a → 0, â → 0. In that case,
A = I, which has determine of +1. Hence, matrices with ~a 6= 0 must in the same component
as matrices with ~a = 0, which is the component consisting of matrices in SO(3).
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Part (b): This is a calculation. The hard part is to derive an expression for (I − â)−1:

(I − â)−1 =
1

1 + ||a||2

 (1 + a2
x) (−az + axay) (ay + axaz)

(az + axay) (1 + a2
y) (−ax + ayaz)

(−ay + axaz) (ax + ayaz) (1 + a2
z)


where ~a =

[
ax ay az

]T
.

Part (c): There are two ways to solve this. The simplest way is to use the result of part
5(b) quoted in the text:

R =
1

1 + ||a||2

1 + a2
1 − a2

2 − a2
3 2(a1a2 − a3) 2(a1a3 + a2)

2(a1a2 + a3) 1− a2
1 + a2

2 − a2
3 2(a2a3 − a1)

2(a1a3 − a2) 2(a2a3 + a1) 1− a2
1 − a2

2 + a2
3

 (1)

where ||a||2 is shorthand notation for ||a||2 = a2
1 + a2

2 + a2
3. Noting that

trace(R) =
3− ||a||2

1 + ||a||2
⇒ ||a||2 =

3− trace(R)

1 + trace(R)
=

3− r11 − r22 − r33

1 + r11 + r22 + r33

so that an expression for ||a||2 is known, simple algebraic manipulation of the off-diagonal
term of R yield a1

a2

a3

 =
1 + ||a||2

4

r32 − r23

r13 − r31

r21 − r12


If you didn’t use the results of 5(b) in the text, then you would have started with Cayley’s
formula R = (I − â)−1(I + â) and derived Equation (1).

Problem 3: (5 points, Problem 8(b) of chapter 2 in the MLS text).

egΛg
−1

= I +
1

1!
gΛg−1 +

1

2!
(gΛg−1)2 +

1

3!
(gΛg−1)3 + · · ·

= I +
1

1!
gΛg−1 +

1

2!
(gΛ2g−1) +

1

3!
(gΛ3g−1) + · · ·

= g(I +
1

1!
Λ +

1

2!
Λ2 +

1

3!
Λ3 + · · · )g−1

= geΛg−1

Problem 4: (15 points, Euler Angles)

Let Z-X-Y Euler angles be denoted by ψ, φ, and γ.
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• Part (a): Develop an expression for the rotation matrix that describes the Z-X-Y
rotation as a function of the angles ψ, φ, and γ.

Rotation about the z-axis by angle ψ can be represented by a rotation matrix whose
form can be determined from the Rodriguez Equation:

Rot(~z, ψ) = I + sinψẑ + (1− cosψ)ẑ2 =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 .

Using the Rodriguez equation, the rotations about the y-axis and x-axis can be simi-
larly found as:

Rot(~x, φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 Rot(~y, γ) =

 cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ

 .

Multiplying the matrices yields the result:

R(ψ, φ, γ) = Rot(~z, ψ) Rot(~x, φ) Rot(~y, γ)

=

(cψ cγ − sψ sφ sγ) −sψ cφ (cψ sγ (cψ sγ + sψ sφ cγ)
(sψ cγ + cψ sφ sγ) cψ cφ (sψ sγ − cψ sφ cγ)

−cφ sγ sφ cφ cγ

(2)

where cφ and sφ are respectively shorthand notation for cosφ and sinφ, etc.

• Part (b): Given a rotation matrix of the form:

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3)

compute the angles ψ, φ, and γ as a function of the rij.

Direct observation of the matrices in Equations (2) and (3) show that:

sinφ = r32 .

Because sin(π − φ) = sinφ, there are two solutions to this equation: φ1 = sin−1(r32),
and φ2 = π − φ1. Similar matchings of the matrix components yield:

ψ = Atan2[
r22

cosφ
,
−r12

cosφ
]

γ = Atan2[
r33

cosφ
,
−r31

cosφ
]

where the value φ1 or φ2 is used consistently
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Problem 5: (Problem 11(a,b) in Chapter 2 of the MLS text).

Part (a): Recall that the matrix exponential of a twist, ξ̂, is:

eφξ̂ = I +
φ

1!
ξ̂ +

φ2

2!
ξ̂2 +

φ3

3!
ξ̂3 + · · ·

First, let’s consider the case of ξ = (v, ω), with ω = 0. If:

ξ̂ =

0 0 vx
0 0 vy
0 0 0


then ξ̂2 = 0. Thus

eφξ̂ =

1 0 φvx
0 1 φvy
0 0 1

 =

[
I ~vφ
~0t 1

]
To compute the exponential for the more general case in which ω 6= 0, let us assume that
||ω|| = 1. In this case, note that ω̂2 = −I, where I is the 2× 2 identity matrix. It is easiest
if we choose a different coordinate system in which to perform the calculations. Let

ξ̂ =

0 −ω vx
ω 0 vy
0 0 0

 =

[
ω̂ ~v
~0T 0

]

Let

g =

[
I ω̂~v
~0T 1

]
Let is define a new twist, ξ̂

′
:

ξ̂
′

= g−1ξ̂g

=

[
I −ω̂~v
0 1

] [
ω̂ ~v
0 0

] [
I ω̂~v
0 1

]
=

[
ω̂ (ω̂2~v + ~v)
0 0

]
=

[
ω̂ 0
0 0

]
where we made use of the identity ω̂2 = −I. That is, we have chosen a coordinate system
in which ξ̂

′
corresponds to a pure rotation. Thus,

eφξ̂
′

=

[
eφω̂ 0
0 1

]
.

Using Eq. (2.35) on page 42 of the MLS text:

eφξ̂ = geφξ̂
′

g−1 =

[
eφω̂ (I − eφω̂)ω̂~vφ
0 1

]
4



which is clearly an element of SE(2).

Part(b): It is easy to see from part (a) that the twist ξ = (vx, vy, 0)T maps directly to the
planar translation (vx, vy).

The twist corresponding to pure rotation about a point ~q = (qx, qy) can be thought of as the
Ad-transformation of a twist, ξ

′
= (0, 0, ω), which is pure rotation, by a transformation, g,

which is pure translation by ~q:

ξ = Adhξ
′
= (hξ̂

′
h−1)∨ (4)

where

h =

[
I ~q
0 1

]
and x̂i

′

=

[
ω̂ 0
~0T 0

]
.

Expanding Eq. (4) gives:

ξ = (hξ̂
′
h−1)∨ =

[
ω̂ −ω̂~q
~0T 0

]∨
=

 qy
−qx

1


assuming ω = 1.
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