
Summary of the A* Algorithm

The A-Star algorithm maintains two sets, the OPEN list and the CLOSED list. The OPEN list keeps track of
those nodes that need to be examined, while the CLOSED list keeps track of nodes that have already been
examined. Initially, the OPEN list contains just the initial node, and the CLOSED list is empty. Each node n in
the graph maintains the following additional information:

• g(n) = the cost of getting from the initial node to n.
• h(n) = the estimate, according to the heuristic function, of the cost of getting

from n to the goal node.
• f(n) = g(n) + h(n); intuitively, this is the estimate of the best solution that

goes through n.

Each node also maintains a pointer to its parent, so that later we can retrieve the best solution found, if one is
found.

A-Star has a main loop that repeatedly gets the node, call it n, with the lowest f(n) value from the OPEN list (in
other words, the node that we think is the most likely to contain the optimal solution). If n is the goal node, then
we are done, and all that’s left to do is return the solution by backtracking from n. Otherwise, we remove n from
the OPEN list and add it to the CLOSED list. Next, we generate all the possible successor nodes of n (the action
set U(n)). For each successor node n’, if it is already in the CLOSED list and the copy there has an equal or
lower f estimate, then we can safely discard the newly generated n’ and move on (we can do this since a copy
with a better estimate on the CLOSED list means we’ve already looked at it, and the new copy won’t do any
better). Similarly, if n’ is already in the OPEN list and the copy there has an equal or lower f estimate, we can
discard the newly generated n’ and move on (we’re going to be looking at a better version of n’ later, so no need
to keep this one around).

If no better version of n’ exists on either the CLOSED or OPEN lists, we remove the inferior copies from the
two lists and set n as the parent of n’. We also have to calculate the cost estimates for n’ as follows: set g(n’) to
g(n) plus the cost of getting from n to n’; set h(n’) to the heuristic estimate of getting from n’ to the goal node;
and set f(n’) to g(n’) plus h(n’). Lastly, add n’ to the OPEN list and return to the beginning of the main loop

In pseudo-code, A-Star looks like this:

Algorithm A-Star

Initialize OPEN list (to the empty list)
Initialize CLOSED list (to the empty list)
Create goal node; call it node_goal
Create start node; call it node_start
Add node_start to the OPEN list

while the OPEN list is not empty
{
 Get node n off the OPEN list with the lowest f(n)
 Add n to the CLOSED list
 IF n is the same as node_goal
 we have found the solution; return Solution(n)

 ELSE: Generate each successor node n' of n

 for each successor node n' of n
 {
 Set the parent of n' to n
 Set h(n') to be the heuristically estimate distance to node_goal
 Set g(n') to be g(n) plus the cost to get to n' from n
 Set f(n') to be g(n') plus h(n')

 if n' is on the OPEN list and the existing one is as good or better
 then discard n' and continue
 if n' is on the CLOSED list and the existing one is as good or better
 then discard n' and continue
 Remove occurrences of n' from OPEN and CLOSED
 Add n' to the OPEN list
 }
}

return failure (if we reach this point, we’ve searched all reachable nodes and still
haven’t found the solution, therefore one doesn’t exist)

The Heuristic Function

The success of A-Star rests heavily on the heuristic function chosen. For any given problem that we may wish
to apply A-Star to, there are good heuristics and bad heuristics. A good one will allow the algorithm to run
quickly and find the optimal solution. A bad one may just increase the running time. Or it may be so bad that it
misleads the algorithm into returning sub-optimal solutions or not find solutions at all.

To guarantee that we will find the optimal solution, if one exists, the heuristic must be “admissible.” To be
admissible, a heuristic must never over-estimate the cost of getting from a state to the goal state. It’s easy to see
why this is true: an over-estimating heuristic may think the cost of the optimal solution is higher than it really is,
higher than some other solution’s estimated cost, and therefore make the algorithm pick a sub-optimal solution
over the optimal one.

Another issue is how quickly the heuristic function can be computed. There’s almost always a trade-off between
the accuracy of the heuristic and the time it takes to compute its estimates. It’s nice when the heuristic is very
accurate, as it has been shown that when using a perfectly accurate heuristic, A-Star will expand exactly the
nodes on the solution path and return the optimal solution. However, a perfect heuristic is almost never
available, and to even come close requires significant additional computation. A lot of the time, a heuristic that
only comes close to a perfect estimate, but runs very quickly, is superior to one that is perfect but takes forever
to do so. For example, in the context of computer game path-finding, you don’t really need the absolute best
path to some destination; you just want a good path quickly. When choosing the heuristic function for a specific
implementation of A-Star, one should always think carefully about whether speed or accuracy is more valuable
in the context of the problem.

