CDS 101/110: Lecture 4.1
State Feedback

October 17, 2016

Goals:
* |ntroduce control design concepts and classical “design patterns”
* Describe the design of state feedback controllers for linear systems
e Define reachability of a control system and give tests for reachability

Reading:
e Astrém and Murray, Feedback Systems 2e, Ch 7



Design Patterns for Control Systems

“Classical” control (1950s...)
------------------------- ¢ e Reference input shaping
) |

F(s) |—=(3) ¢ ——=(2) P(s) e Feedback on output error
e Compensator dynamics
shape closed loop response

— . o Uncertainty in process
_Controller /™ , | Process | dynamics P(s) + external
disturbances (d) & noise (n)

e Goal: output y(t) should track reference trajectory r(t)

e Design typically done in “frequency domain” (second half of CDS 101/110a)
“Modern” (state space) control (1970s...)

d e Assume dynamics are given
____ Controller Process by linear system, with known
| o~ b A W | F— s B A, B, C matrices
r —= k )& c | - e Measure the state of the
| I y = Lux

system and use this to

i | modify the input

X " o U=-Kx+Kker

e Goal unchanged: output y(t) should track reference trajectory r(t) [often constant]




State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

&= f(x,u) r € R", 2(0) given
y = h(x) ueR, yeR

Stability: stabilize the system around an equilibrium point
e Given equilibrium point 2. € R™ | find control “law” z = a(x)
such that
lim z(t) = x. for all z(0) € R"

t— o0

¢ Often choose x. so that y. = /i(x.) has desired value r (constant)

Reachability: steer the system between two points
¢ Given z,.xy € R" find an input u(7) such that

= f(x,u(t)) takes x(tg) = 290 — (1) = ay

Tracking: track a given output trajectory
e Given r =y (1), find u = a(x,7) such that

lim (y(t) — ya(t)) = 0 for all z(0) € R"

t— oo




Reachability of Input/Output Systems

fle,u) x € R™ z(0) given Xo
h(x) weR, yeR \ @
Nl

.
X
4

y

Defn An input/output system is reachable if for any
z,,ry € R" and any time I'> 0 there exists an input
up, 71 € R such that the solution of the dynamics starting Note: the term “controllable”

from x(0) = x, and applying input u(7) gives x(T) = x,. 's also commonly used to
(0) =X, pplying input (1) (1) = x1 describe this concept

Remarks

e In the definition, x,and x, do not have to be equilibrium points = we don't necessarily
stay at x; after time T.

e Reachability is defined in terms of states = doesn’t depend on output
e For inear systems, can characterize reachability by looking at the general solution:
T

r = Ar+ Bu AT A(T—=)
Y x(T)=e" x, + f e Bu(t)drt
1=0

If integral is “surjective” (as a linear operator), then we can find an input to achieve
~ any desired final state.




Tests for Reachability

i =Ar+Bu = €R" z(0) given

T
x(TM)=e"x, + [ e’ Butt)dx
y=Cux ueR, yeR () 0 {[0 ©)

Thm Alinear system is reachable if and only if the » x n reachability matrix

[B AB A2B ... A”_lB]
Note: also called
is full rank. “controllability” matrix

Remarks
e Very simple test to apply. In MATLAB, use ctrb(A,B) and check rank w/ det()
e |f this test is satisfied, we say “the pair (A,B) is reachable”
e Some insight into the proof can be seen by expanding the matrix exponential

1

(n—1)!
= BHAB(T—7) 4 AB(T —7)2 4+ —— AV Lp(T — )1 4.
2 (n—1)!

AT-Np = (I-I—A(T—'r)-l—;AQ(T—T)Q-I—----I— A”l(T—'r)”l-l----)B

(Cayley-Hamilton Theorem: Friday)



Example #1: Linearized pendulum on a cart

Question: can we locally control the position of the cart by
proper choice of input?

e Simple case: move from one equilibrium point to another

e More generally: hit arbitrary position, angle and velocities
(but near equilibrium point)

{ ) Approach: look at the linearization around upright position

‘ P (good approximation to the full dynamics if 6 remains small)
P

- - 0 0 1 0 1 ¢ - i 0 i « Simplify by
Z l;’ 0 0 0 1 g 0 setting ¢, y=0
g :
— = 0 ?73..2:'.29 —CJ/O —ylm~ |+ Ji Uu * Define 5 o
dt p M¢J:—m?212 M JZ~<m212 My J~<m212 p My Js—m?Z212 = M, J, —m~l°
_9_ 0 Memgl —cl 0 —?MO _9_ lm
LY My Ji—m22 MpH—m2I2 Myg—m?2i2 - L M Je—m>1>
0 0 gfiigf’  Full rank as long as constants are such that
E 2m? (mt M) columns 1 and 3 are not multiples of each other
0 im D gi-m M-I . )
W — m — ur ) g2 14m
r JF 0 gli-;ns’ 0 « = reachable as long as det(1V,) = I # 0
Im () glmE(mtM) 0 « = can “steer” (linearization) between any two
[ @ p

B AB  AB B points by proper choice of input



Trajectory Generation (and Tracking)

Given that a (linear) system is reachable, how do we compute the inputs??
¢ Method #1: formulate as an “optimal control problem” and solve numerically

o . . - CDS
min [ L(z,u)dt subjectto = = f(x, u), z(0) =z, 2(T) = xy
u(-) Jo 112
¢ Method #2: create a stabilizing control law to an equilibrium point: # = we + a(x-xe)

lim z(t) = z, for all (0) € R" —  x(0) =20 — z(00) = z¢

t— o0

¢ These methods only work if the system is reachable and almost always require that
the linearization at a nearby equilibrium point be reachable (which we can check)

Given feasible input/state trajectory, use feedback to manage uncertainty
¢ General picture = trajectory generation (feedforward) + feedback compensation

Ug d n

Types of uncertainty:
Trajectory l l _
Generation Xa . Ui W ] ¥y L Process d|SturbanceS

e
Ll State . n . .
) Feedback [T ()| Process [—=(2) e Sensor noise

. e Unmodeled dynamics

Environment | —— -~ - - —1 ~— Observer

A *

A

A

More on trajectory
generation in CDS 112



State space controller design for linear systems

r=Axr+ DB x e R"™, x(0 iven . ! —1
oo (0) x(T)=e"x, + [ "' Bu(v)de
=0

y=Cxr ueR, yeR
Goal: find a linear control law v =-K x + k- r  Comroller 4 Process
such that the closed loop system ] U W] Ax + Bu
r -k ~3) )
# = Az + Bu = (A— BK)z + Bk,r | ¥ T y=cxenu
is stable at equilibrium point x. with y. = 7. i_x . |
Remarks

e |[f =0, control law simplifies to # = -K x and system becomes = = (A — BK)x

e Stability based on eigenvalues = use K to make eigenvalues of (4 - BK) stable
e Can also link eigenvalues to performance (eg, initial condition response)

¢ Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (4 - BK) can be set to arbitrary values if and only if the
pair (4, B) is reachable.

Python users: use python-control toolbox
- — . . - »
MATLAB/Python: K = place(A, B, eigs) (available at python-control.org)



Example #2: Predator prey

(From FBS Section 4.7)

System\dynamics
ﬁ: ?“+’u)H(1—H)— aH L H > 0.

(growth rate)

dt k c+H'
Q — aH L _dL. prey consump- -y 5,
dt c+H tion rate)
e Stable limit cycle with unstable equilibrium point —_
at H.=20.6, L.=29.5 ol —— s - - |
) - t
e Can we design the dynamics of the system by Fuy /F'J'., "f ” f'“ f“" fﬂ|['- :
modulating the food supply (“#” in “r + " term) 51?0- ..' ’ll r v
AL L./u/m/ u

Q1: can we move from a given initial population AR
of lynxes and rabbits to a specified one intime 7 197,
by modulation of the food supply?

/stable

Q2: can we stabilize the lynx population around
a desired equilibrium point (eg, Ls; = ~30)?
e Try to keep lynx and hare population in check

Lynxes

—t=lnstable

Approach: try to stabilize using state feedback law




Example #2: Problem setup

Equilibrium point calculation

f = inline('predprey(0, x)', 'X');
dH H (IHL Xeq = fsolve(f, [20, 30])'; He = xeq(l); Le = xeq(2);
dt — (’}“ T U-)H (1 o }) o c 4 H % Generate the linearization around the eq point
i v - App — [
dl. aHL -((a*c*k*Le + (c + He)"2*(2*He - k)*r)/((c + He)" 2%
— = —dL (a*b*c*Le)/(c + He)"2, -d + (a*b*He)/(c + He)
dt c+H 1;
Bpp = [He*(1 - He/k); 0];
® Xe = (2061 295)1 Ue = 01 [‘9 = 295 % Check reachability
if (det(ctrb(App, Bpp)) ~= 0) disp “reachable”; end

Linearization
e Compute linearization around equilibrium point, x.:

Y

dx highe
i Alx —x.) + B(u —ue) + Hene

ox (o) ou 5at) dt order terms
e Redefine local variables: z=x-x., v =u-u.
acl, 2H . r __ _aH, __ H.
d 21 | (c+H.)? o k - c+H, 21 H‘e' (1 k ) .
E ~o | T abel . abH. d s + U
b2 (c+H.)? c+He -2 0

e Reachable? YES, if a, » # 0 (check [B AB]) = can locally steer to any point



Example #2: Stabilization via eigenvalue assignment

acL, 2H.r _ aH, _ H.
i A | (e+H)Z T Tk T c+H. “1 + H. (1 k ) 1
dIL ~ o M % — d s t
b [*2 (ot M. )° —+a., @ [*2 0
Control design: 70 ‘ - )
.'\\ are
vV = _KZ — _kl(H - He) - kQ(L - L‘B) 60 ; \\‘ _____ Lynx
c 5011 1
U = Ue + B (I — Ie) _Zi o ! \‘1\
Place poles at stable values < 50 /L ___________________
e Choose A=-0.1,-0.2 20§
* MATLAB: Kpp = place(App, Bpp, [-0.1; -0.2]); % 2 40 e s 100
Key principle: design of dynamics 100
e Use feedback to create a stable equilibrium point “
More advanced: control to desired value r =L, . col
a
I Controller ‘I l ‘ Process - a0l
: E N Y| k=Ax+Bu , ) .
r _E_h kr ) ! \&/ y=Cx+ Du ) 20\ N = - P
-~ — T T~ ==

100

: Hares



Implementation Detalls

Eigenvalues determine performance | Im
. — 2 ™
® For each eigenvalue A=c; + jw,, get F;_fj‘ N P /\ 7\
a contribution of the form ) " o AR C
z=1 - Re ¥ VA
— (T . L o “ - -1 1 — —
yi(t) = e 7' (asin(w;t) + b cos(w;t)) N /\\
z=2 * ost /) e
® Repeated eigenvalues can give addi- [][]/ : -
tional terms of the form tk ¢° #/» = be careful :

Use observer to determine the current state if you can’t measure it

u *Estimator looks at inputs and
ﬂf d .
outputs of plant and estimates
y l l the current state
fb u v " Y

n
Stat l . .
() Feedi,zck (E}_’()—' Process —"@—" eCan show that if a system is

I observable then you can

A c302nstruct and estimator

—
-l

—1 |- Observer

- *Use the estimated state as the
feedback u = Kx

* Next week: basic theory of state estimation and observability
* CDS 112: . Kalman filtering = theory of optimal observers (and basis for particle filters, ...)




Summary: Reachability and State Space Feedback

Xo
r = Ax + Bu \ / ; )
Xf

y=Cx \___/

[B AB A?B ... A”_lB]

Key concepts
e Reachability: find «

s.t. xp = x;

100

® Reachability rank
test for linear
systems

e State feedback to
assign eigen-
values

Lynxes
Lynxes
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