ME/CS 133(a): Homework \#2

(Due Wednesday, Oct. 18, 2017)

Problem 1: (15 Points) Do Problem 4(a,b) in Chapter 2 of MLS.

Problem 2: (5 points) Do Problem 3(c) in Chapter 2 of MLS.

Problem 3: (10 points) Do Problem 8(b,c) in Chapter 2 of MLS.

Problem 4: (15 points) Let Z-Y-X Euler angles be denoted by ψ, ϕ, and γ. That is, successfully rotate a body about its body fixed z, y, and x axes by the angles ψ, ϕ, and γ.

- Part (a): Develop an expression for the rotation matrix that describes the Z-Y-X rotation as a function of the angles ψ, ϕ, and γ.
- Part (b): Given a rotation matrix of the form:

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

compute the angles ψ, ϕ, and γ as a function of the $r_{i j}$.

Problem 5: (5 points) Do Problem 10(b) in Chapter 2 of MLS. There is no need to answer the second part of the question concerning the surjectivity of the exponential map.

