Difference between revisions of "JoelBurdick"
m (→Imaging Stuff) |
(→Other Approaches) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 305: | Line 305: | ||
==== AutoEncoders ==== | ==== AutoEncoders ==== | ||
* [https://medium.com/@j.zh/mathematics-behind-variational-autoencoders-c69297301957 Math behind variational autoencoders]; [https://blog.devgenius.io/semi-supervised-learning-with-autoencoders-33f36305e816 Semi-Supervised Learning via Autoencoders] | * [https://medium.com/@j.zh/mathematics-behind-variational-autoencoders-c69297301957 Math behind variational autoencoders]; [https://blog.devgenius.io/semi-supervised-learning-with-autoencoders-33f36305e816 Semi-Supervised Learning via Autoencoders] | ||
+ | * [https://medium.com/@schatty/vae-careful-walkthrough-5d01e7dbf1ab Variational Autoencoder Walkthrough] | ||
==== Gauusian Processes ==== | ==== Gauusian Processes ==== | ||
Line 325: | Line 326: | ||
* [https://hci.stanford.edu/courses/cs335/2020/sp/lec3.pdf On-line Lecture Fair AI]; [https://medium.com/geekculture/explainable-defect-detection-using-convolutional-neural-networks-case-study-2b58bc17c8b1 Explainable Defect Detection] | * [https://hci.stanford.edu/courses/cs335/2020/sp/lec3.pdf On-line Lecture Fair AI]; [https://medium.com/geekculture/explainable-defect-detection-using-convolutional-neural-networks-case-study-2b58bc17c8b1 Explainable Defect Detection] | ||
| | | | ||
+ | |||
+ | ==== Chat-GPT ==== | ||
+ | * [https://medium.com/geekculture/5-chatgpt-features-to-boost-your-daily-work-404478fd70ca 5 Chat-GPT features] | ||
==== Time Series ==== | ==== Time Series ==== | ||
Line 332: | Line 336: | ||
* [https://github.com/yromano/cqr Conformalized QUantile Regression (GitHub)];[https://github.com/numenta/NAB/tree/master/nab/detectors/knncad Conformal Anamoly Detection (GitHub)]; [https://github.com/ryantibs/conformal/ Conformal Inference R Project]; [https://github.com/donlnz/nonconformist Nonconformist: Python CP]; | * [https://github.com/yromano/cqr Conformalized QUantile Regression (GitHub)];[https://github.com/numenta/NAB/tree/master/nab/detectors/knncad Conformal Anamoly Detection (GitHub)]; [https://github.com/ryantibs/conformal/ Conformal Inference R Project]; [https://github.com/donlnz/nonconformist Nonconformist: Python CP]; | ||
− | * [https://mapie.readthedocs.io/en/latest/index.html Mapie] | + | * [https://mapie.readthedocs.io/en/latest/index.html Mapie]; [https://towardsdatascience.com/conformal-prediction-in-julia-351b81309e30 Conformal Prediction in Julia] |
* '''Tutorial:''' [https://medium.com/analytics-vidhya/a-guideline-to-conformal-prediction-7a392fc29bc1#:~:text=A%20conformity%20score(%E2%88%9D)%20is,is%20non%2Dconforming%20or%20strange. A Guideline to CP]; [https://medium.com/@jchen001/8-anomaly-detection-techniques-summary-comparison-and-code-83a25cc27c66 8 Anomaly Detection Methods] | * '''Tutorial:''' [https://medium.com/analytics-vidhya/a-guideline-to-conformal-prediction-7a392fc29bc1#:~:text=A%20conformity%20score(%E2%88%9D)%20is,is%20non%2Dconforming%20or%20strange. A Guideline to CP]; [https://medium.com/@jchen001/8-anomaly-detection-techniques-summary-comparison-and-code-83a25cc27c66 8 Anomaly Detection Methods] | ||
Line 481: | Line 485: | ||
* [http://www.dagstuhl.de/ Shloss Dagstuhul] (Liebniz Center for INformatics--Seminar Program); | * [http://www.dagstuhl.de/ Shloss Dagstuhul] (Liebniz Center for INformatics--Seminar Program); | ||
==== Vision/Graphics ==== | ==== Vision/Graphics ==== | ||
+ | * [https://moez-62905.medium.com/top-python-libraries-for-computer-vision-in-2022-9ff1bdb1bca2 Python Libraries for Computer Vision]; | ||
* '''U-Net:''' [https://medium.com/@mlquest0/unet-clearly-explained-a-better-image-segmentation-architecture-f48661c92df9 U-Net ++]; [https://solomon-ai.medium.com/image-segmentation-for-self-driving-car-using-unet-canet-72eab7d424c8 U-NET/CatNet]; [https://medium.com/@mlquest0/transunet-no-more-cnns-for-image-segmentation-278e85c81914 TransUNet] | * '''U-Net:''' [https://medium.com/@mlquest0/unet-clearly-explained-a-better-image-segmentation-architecture-f48661c92df9 U-Net ++]; [https://solomon-ai.medium.com/image-segmentation-for-self-driving-car-using-unet-canet-72eab7d424c8 U-NET/CatNet]; [https://medium.com/@mlquest0/transunet-no-more-cnns-for-image-segmentation-278e85c81914 TransUNet] | ||
* [https://medium.com/mlearning-ai/various-computer-vision-architectures-whats-the-difference-db123df23865 Various Vision Architectures]; [https://idiotdeveloper.com/what-is-resunet/ RESUNET] | * [https://medium.com/mlearning-ai/various-computer-vision-architectures-whats-the-difference-db123df23865 Various Vision Architectures]; [https://idiotdeveloper.com/what-is-resunet/ RESUNET] | ||
Line 674: | Line 679: | ||
* [https://www.amazon.com/dp/B07N137XQN?tag=track-ect-usa-1189084-20&linkCode=osi&th=1 SuperHandy Chipper/Shredder/Mulcher]; [https://www.homedepot.com/p/Brush-Master-3-in-11-HP-270cc-Gas-Powered-Self-Feed-Chipper-Shredder-with-Unique-Innovation-3-in-1-Discharge-Safety-Goggles-CH8M21/316465452 Brush Master 3 inch] | * [https://www.amazon.com/dp/B07N137XQN?tag=track-ect-usa-1189084-20&linkCode=osi&th=1 SuperHandy Chipper/Shredder/Mulcher]; [https://www.homedepot.com/p/Brush-Master-3-in-11-HP-270cc-Gas-Powered-Self-Feed-Chipper-Shredder-with-Unique-Innovation-3-in-1-Discharge-Safety-Goggles-CH8M21/316465452 Brush Master 3 inch] | ||
| | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==== Walking Frame Ideas ==== | ==== Walking Frame Ideas ==== | ||
Line 717: | Line 715: | ||
* '''Vision:''' | * '''Vision:''' | ||
− | ** '''YOLO Stuff:''' [https://medium.com/@pedroazevedo6/what-is-the-best-yolo-8526b53414af Which is the Best Yolo?]; [https://medium.com/@pedroazevedo6/from-yolo-to-yolov4-3dcba691d96a From Yolo to Yolo4]; [https://medium.com/@ANAI-DemocratizingAI/yolov6-explained-in-simple-terms-c46a0248bddc Yolo 6]; [https://medium.com/@asmitasinha/yolact-real-time-instance-segmentation-1-af0c27ee0bbc YOLACT object detection/segmentation]; [https://github.com/jinfagang/yolov7 Yolo 7 git]; [https://medium.com/augmented-startups/yolov7-training-on-custom-data-b86d23e6623 Training Yolo7 on custom data]; [https://medium.com/codex/imvotenet-paper-review-and-code-analysis-bf103117b32e ImVoteNet]; [https://syncedreview.com/2022/07/12/academia-sinicas-yolov7-outperforms-all-object-detectors-reduces-costs-by-50/ Yolo 7]; [https://amalaj7.medium.com/yolov7-now-outperforms-all-known-object-detectors-fd7170e8542d YoloV7 is best]; [https://medium.com/augmented-startups/train-yolov7-segmentation-on-custom-data-b91237bd2a29 Custom Data Training] | + | ** '''YOLO Stuff:''' [https://medium.com/@pedroazevedo6/what-is-the-best-yolo-8526b53414af Which is the Best Yolo?]; [https://medium.com/@pedroazevedo6/from-yolo-to-yolov4-3dcba691d96a From Yolo to Yolo4]; [https://medium.com/@ANAI-DemocratizingAI/yolov6-explained-in-simple-terms-c46a0248bddc Yolo 6]; [https://medium.com/@asmitasinha/yolact-real-time-instance-segmentation-1-af0c27ee0bbc YOLACT object detection/segmentation]; [https://github.com/jinfagang/yolov7 Yolo 7 git]; [https://medium.com/augmented-startups/yolov7-training-on-custom-data-b86d23e6623 Training Yolo7 on custom data]; [https://medium.com/codex/imvotenet-paper-review-and-code-analysis-bf103117b32e ImVoteNet]; [https://syncedreview.com/2022/07/12/academia-sinicas-yolov7-outperforms-all-object-detectors-reduces-costs-by-50/ Yolo 7]; [https://amalaj7.medium.com/yolov7-now-outperforms-all-known-object-detectors-fd7170e8542d YoloV7 is best]; [https://medium.com/augmented-startups/train-yolov7-segmentation-on-custom-data-b91237bd2a29 Custom Data Training]; [https://medium.com/augmented-startups/yolov8-the-future-of-object-detection-is-here-5ab65c3f9975 Yolo V8]; [https://medium.com/mlearning-ai/yolo-v8-the-real-state-of-the-art-eda6c86a1b90 Yolo V8!]; |
− | ** '''Segmentation:''' [https://arxiv.org/abs/1904.02689 Yolact: Real-Time INstance Segmentation]; [https://arxiv.org/abs/2003.10152 SoloV2: Dynamic Fast Instance Segmentation] | + | ** '''Segmentation:''' [https://arxiv.org/abs/1904.02689 Yolact: Real-Time INstance Segmentation]; [https://arxiv.org/abs/2003.10152 SoloV2: Dynamic Fast Instance Segmentation] [https://medium.com/datatonic/computer-vision-deploying-image-segmentation-models-on-vertex-ai-e51ca67a7ed4 Image Segmentation on Vertex AI]; [https://pub.towardsai.net/build-a-semantic-segmentation-model-with-one-line-of-code-32b6eab0cb81 Best One-Line Image Segmentation Library] |
** '''Object Detection/Tracking:''' [https://medium.com/@pedroazevedo6/object-tracking-state-of-the-art-2022-fe9457b77382 SOTA Object Tracking]; [https://medium.com/axinc-ai/detic-object-detection-and-segmentation-of-21k-classes-with-high-accuracy-49cba412b7d4 DETIC (object detection and segmentation)]; [https://medium.com/codex/improve-the-performance-of-your-object-detection-model-54a94f374636 Improve Object Detection]; [https://medium.com/oxford-semantic-technologies/machine-learning-and-semantic-reasoning-the-perfect-union-using-object-detection-with-rdfox-2b291267d893 RDFox Semantic Segmentation, Object Detection] | ** '''Object Detection/Tracking:''' [https://medium.com/@pedroazevedo6/object-tracking-state-of-the-art-2022-fe9457b77382 SOTA Object Tracking]; [https://medium.com/axinc-ai/detic-object-detection-and-segmentation-of-21k-classes-with-high-accuracy-49cba412b7d4 DETIC (object detection and segmentation)]; [https://medium.com/codex/improve-the-performance-of-your-object-detection-model-54a94f374636 Improve Object Detection]; [https://medium.com/oxford-semantic-technologies/machine-learning-and-semantic-reasoning-the-perfect-union-using-object-detection-with-rdfox-2b291267d893 RDFox Semantic Segmentation, Object Detection] | ||
− | ** [https://www.labforge.ca/features-ictn/ Labforge Multi-Camera Tracking]; [https://medium.com/mlearning-ai/the-best-object-detection-libraries-that-i-work-with-835428a1e01e Best Object Detection Libraries] | + | ** [https://www.labforge.ca/features-ictn/ Labforge Multi-Camera Tracking]; [https://medium.com/mlearning-ai/the-best-object-detection-libraries-that-i-work-with-835428a1e01e Best Object Detection Libraries]; [https://pub.towardsai.net/build-a-semantic-segmentation-model-with-one-line-of-code-32b6eab0cb81 Best Library For Image Segmentation] |
** '''RTSP:''' [https://www.getscw.com/decoding/rtsp Generalized RTSP directions]; [https://reolink.com/blog/stream-ip-camera-to-youtube/ Set Up RTSP Streaming]; [https://github.com/mpromonet/v4l2rtspserver GitHub RTSP v4l2 server code]; [https://reolink.com/product/argus-pt/ Reolink RTSP camera] | ** '''RTSP:''' [https://www.getscw.com/decoding/rtsp Generalized RTSP directions]; [https://reolink.com/blog/stream-ip-camera-to-youtube/ Set Up RTSP Streaming]; [https://github.com/mpromonet/v4l2rtspserver GitHub RTSP v4l2 server code]; [https://reolink.com/product/argus-pt/ Reolink RTSP camera] | ||
** '''Misc:''' [https://medium.com/@pedroazevedo6/deepstream-for-idiots-a28cd38a6e81 DeepStream for Idiots]; [https://medium.com/@danya.kosmin/an-overview-of-opencv-ai-kit-7702575dbb31 OpenCV AI kit] | ** '''Misc:''' [https://medium.com/@pedroazevedo6/deepstream-for-idiots-a28cd38a6e81 DeepStream for Idiots]; [https://medium.com/@danya.kosmin/an-overview-of-opencv-ai-kit-7702575dbb31 OpenCV AI kit] | ||
Line 727: | Line 725: | ||
* '''Time Series:''' [https://stumpy.readthedocs.io/en/latest/Tutorial_STUMPY_Basics.html Stumpy] | * '''Time Series:''' [https://stumpy.readthedocs.io/en/latest/Tutorial_STUMPY_Basics.html Stumpy] | ||
+ | |||
+ | ==== NLS ==== | ||
+ | * [http://ceres-solver.org/ Ceres NLS solver]; [https://www.gnu.org/software/gsl/doc/html/nls.html GNU NLS Solver]; | ||
==== Other Approaches ==== | ==== Other Approaches ==== |
Latest revision as of 21:55, 22 March 2023
Welcome to my personal research wiki page. I use this wiki to link to sites of research/technical/academic/administrative interest, and to keep files relevant to my research collaborations. This wiki is permanently under construction, as it evolves with my research activiites. Hopefully you can find something of use here.
Quick Facts about Me
|
|
Current Research Projects & InterestsMy research is divided between traditional robotics research, and collaborations with neuroscientists to develop technology for paralyzed nervous systems. More information can be found at the Burdick Research Group Homepage Robotics Research
|
Quick Links
|
Teaching
|
On-Line Publications/Catalogs
Handy References |
Conferences, Proposals, etc.
|
Quick Personal Links
|
|
Robotics Links
Motor/Drive Resources
Tutorial |
Servo Drive ElectronicsTensor methods |
Machine Learning Resources
Nuts&Bolts Mechanical Engineering/Design Resources
Other Numerical Machine Tools
|
Pneumatics/Hydraulics |
Fixtures/Clamps/VisesBasic Mechanical Componenents
|
Raw Material |
Computational Geometry
Voronoi DiagramsOn-Line DemonstrationsResources |
Origami
TSPMRI Imaging/Segmentation
|
Systems Engineering/Signal Processing
BioEngineering/NeuroEngineering Links
Teaching Aids/Tutorials
|
Temporary Links
These are links that have not yet been organized, or that are needed only on a temporary basis.
DARPA LINC Links
Interface |
GVR-BOT |
DARPA SubT Links
Parkinsons research
Portable Projectors |
Graphics Programming Tools
|
Wiki, Wiki, Wiki
This wiki is based on WikiMedia software, the same software underlying Wikipedia. Below are intro wiki links, and links related to all things wiki.
Getting Started with Wikis
|
More Wiki Topics |