GP SSM
From Robotics
This page gathers references and materials related to the study of "Gaussian Process (GP) State Space Models (SSM)," Deep Learning, and Koopman Spectral Methods.
Contents
Basic Gaussian Process Info
- Rasmussen and Williams
Papers on GP-SSMs
- J.M. Wang, D.J. Fleet, A. Hertzmann, Gaussian Process Dynamical Models
- R. Turner, M.P. Deisenroth, C.E. Rasmussen, State-Space Inference and Learning with Gaussian Process;
- A. McHutchon, Nonlinear Modelling and Control Using Gaussian Processes (Ph.D. thesis, Cambridge University)
- J. Ko, D. Fox, GP-BayesFilters: Bayesian filtering using Gaussian Process Prediction and Observation Models
- F. Perez-Cruz, S.V. Vaerenbergh, J.J. Murrillo-Fuentes, M. Lazarro-Gredilla, and I. Santamaria, Gaussian Processes for Nonlinear Signal Processing;
- A. Svensson, A. Solin, S. Sarkka, T.B. Schon, Computationall Efficient Bayesian Learning of Gaussian Process State Space Models
- A.C. Damianou, M.K. Titsias, N.D. Lawrence, Variational Gaussian Process Dynamical Systems
- M.P. Deisenroth, D. Fox, C.E. Rasmussen, Gaussian Processes for Data-Efficient Learning in Robotics and Control;
- K. Jocikan, Dynamic GP Models: An Overview and Recent Developments;
- A. Solin, S. Sarkka, Hilbert Space Methods for Reduced-Rank Gaussian Process Regression; (ArXiv.1401.5508)
- C.L.C. Mattos, Z. Dai, A. Damianou, J. Forth, G.A. Barreto, N. Lawrence, Recorruent Gaussian Processes
- N.D. Lawrence, A.J. Moore, Hierarchical Gaussian Process Latent Variable Models
- M.K. Titsias, N.D. Lawrence, Bayesian Gaussian Process Latent Variable Model
- R. Calandra, J. Peters, C.E. Rasmussen, M.P. Deisenroth, Manifold Gaussian Processes for Regression
- F. Berkenkamp and A.P. Schoellig, Safe and Robust Learning Control with Gaussian Processes
- E.B. Fox, E.B. Sudderth, M.I. Jordan, A.S. Willsky, Sharing Features Among Dynamical Systems with Beta Processes
- J.M. Wang, D.j. Fleet, A. Hertzmann, Gaussian Process Dynamical Models for Human Motion
- E.D. Klenske, P. Hennig, Dual Control for Approximate Bayesian Reinforcement Learning
- Y. Pan and E.A. Theodorou, Data-Driven Differential Dynamic Programming Using Gaussian Processes
- F. Berkenkamp, R. Moriconi, A.P. Schoellig, A. Krause, Safe Learning of Regions of Attraction for Uncertain, Nonlinear Systems with Gaussian Processes
- M.P. Deisenroth, J. Peters, C.E. Rasmussen, Approximate Dynamic Programming with Gaussian Processes
- R. Frigola, F. Lindsten, T.B. Schon, C.E. Rasmussen, Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM
- T. Beckers, J. Umlauft, and S. Hirsche, Stable Model-Based Control with Gaussian Process Regression for Robot Manipulators,
- A. Marco, P. Hennig, S. Schaal, S. Trimpe, On the Design of LQR Kernels for Efficient Controller Learning, arXiv:1709.07089v1
- N. Gorbach, S. Bauer, J. Buhmann, Scalable Variational Inference for Dynamical Systems, NIPS 2017, Long Beach, CA, 2017.
- J. Umlauft, T. Beckers, M. Kimmel, S. Hirsche, Feedback Linearization Using Gaussian Processes
- F. Lindsten, M.I. Jordan, T.B. Schon, Particles Gibbs with Ancestor Sampling, J. Machine Learning Research, vo. 15, pp. 2145-2184.
Papers on Koopman Spectral methods
- S. Brunton, J. Proctor, N. Kutz, Discovering Governing Equations from Data: Sparse Identification of Nonlinear Dyanmical Systems, arXiv:1509.03580v1
- M. Budisic, R. Mohr, I. Mezic, Applied Koopmanism, Chaos, vol. 22, 2012.