Difference between revisions of "GP SSM"
From Robotics
m (→Papers on Koopman Spectral methods) |
|||
Line 3: | Line 3: | ||
* Deep Learning | * Deep Learning | ||
* Koopman Spectral Methods. | * Koopman Spectral Methods. | ||
+ | |||
+ | == Gaussian Process Approaches == | ||
=== Basic Gaussian Process Info === | === Basic Gaussian Process Info === | ||
* Rasmussen and Williams | * Rasmussen and Williams | ||
+ | |||
+ | === Web Links === | ||
+ | * [http://dsc.ijs.si/jus.kocijan/GPdyn/ Bibliography on GP Models in Dynamical Systems] | ||
=== Papers on GP-SSMs === | === Papers on GP-SSMs === | ||
Line 36: | Line 41: | ||
* J. Umlauft, T. Beckers, M. Kimmel, S. Hirsche, [[Media:FeedbackLinearlizatingUsingGPs.pdf | Feedback Linearization Using Gaussian Processes]] | * J. Umlauft, T. Beckers, M. Kimmel, S. Hirsche, [[Media:FeedbackLinearlizatingUsingGPs.pdf | Feedback Linearization Using Gaussian Processes]] | ||
* F. Lindsten, M.I. Jordan, T.B. Schon, [[Media:ParticleGibbsWithAncestorSamping.pdf | Particles Gibbs with Ancestor Sampling]], ''J. Machine Learning Research'', vo. 15, pp. 2145-2184. | * F. Lindsten, M.I. Jordan, T.B. Schon, [[Media:ParticleGibbsWithAncestorSamping.pdf | Particles Gibbs with Ancestor Sampling]], ''J. Machine Learning Research'', vo. 15, pp. 2145-2184. | ||
+ | |||
+ | == Deep Learning == | ||
+ | |||
+ | === Papers on Deep Learning === | ||
+ | * Soatto Paper | ||
+ | |||
+ | === Web Links === | ||
+ | |||
+ | == Koopman Spectral Method == | ||
=== Papers on Koopman Spectral methods === | === Papers on Koopman Spectral methods === | ||
Line 43: | Line 57: | ||
* Papers which focus on fluids | * Papers which focus on fluids | ||
** I. Mezic, [[Media:AnalysisFluidFlows.pdf | Analysis of Fluid Flows via Spectral Properties of the Koopman Operator]], ''Annual Review of Fluids,'' vol. 45, 357-378, 2013. | ** I. Mezic, [[Media:AnalysisFluidFlows.pdf | Analysis of Fluid Flows via Spectral Properties of the Koopman Operator]], ''Annual Review of Fluids,'' vol. 45, 357-378, 2013. | ||
− | |||
− | |||
− |
Revision as of 23:18, 8 January 2018
This page gathers references and materials related to the study of
- Gaussian Process (GP) State Space Models (SSM)
- Deep Learning
- Koopman Spectral Methods.
Contents
Gaussian Process Approaches
Basic Gaussian Process Info
- Rasmussen and Williams
Web Links
Papers on GP-SSMs
- J.M. Wang, D.J. Fleet, A. Hertzmann, Gaussian Process Dynamical Models
- R. Turner, M.P. Deisenroth, C.E. Rasmussen, State-Space Inference and Learning with Gaussian Process;
- A. McHutchon, Nonlinear Modelling and Control Using Gaussian Processes (Ph.D. thesis, Cambridge University)
- J. Ko, D. Fox, GP-BayesFilters: Bayesian filtering using Gaussian Process Prediction and Observation Models
- F. Perez-Cruz, S.V. Vaerenbergh, J.J. Murrillo-Fuentes, M. Lazarro-Gredilla, and I. Santamaria, Gaussian Processes for Nonlinear Signal Processing;
- A. Svensson, A. Solin, S. Sarkka, T.B. Schon, Computationall Efficient Bayesian Learning of Gaussian Process State Space Models
- A.C. Damianou, M.K. Titsias, N.D. Lawrence, Variational Gaussian Process Dynamical Systems
- M.P. Deisenroth, D. Fox, C.E. Rasmussen, Gaussian Processes for Data-Efficient Learning in Robotics and Control;
- K. Jocikan, Dynamic GP Models: An Overview and Recent Developments;
- A. Solin, S. Sarkka, Hilbert Space Methods for Reduced-Rank Gaussian Process Regression; (ArXiv.1401.5508)
- C.L.C. Mattos, Z. Dai, A. Damianou, J. Forth, G.A. Barreto, N. Lawrence, Recorruent Gaussian Processes
- N.D. Lawrence, A.J. Moore, Hierarchical Gaussian Process Latent Variable Models
- M.K. Titsias, N.D. Lawrence, Bayesian Gaussian Process Latent Variable Model
- R. Calandra, J. Peters, C.E. Rasmussen, M.P. Deisenroth, Manifold Gaussian Processes for Regression
- F. Berkenkamp and A.P. Schoellig, Safe and Robust Learning Control with Gaussian Processes
- E.B. Fox, E.B. Sudderth, M.I. Jordan, A.S. Willsky, Sharing Features Among Dynamical Systems with Beta Processes
- J.M. Wang, D.j. Fleet, A. Hertzmann, Gaussian Process Dynamical Models for Human Motion
- E.D. Klenske, P. Hennig, Dual Control for Approximate Bayesian Reinforcement Learning
- Y. Pan and E.A. Theodorou, Data-Driven Differential Dynamic Programming Using Gaussian Processes
- F. Berkenkamp, R. Moriconi, A.P. Schoellig, A. Krause, Safe Learning of Regions of Attraction for Uncertain, Nonlinear Systems with Gaussian Processes
- M.P. Deisenroth, J. Peters, C.E. Rasmussen, Approximate Dynamic Programming with Gaussian Processes
- R. Frigola, F. Lindsten, T.B. Schon, C.E. Rasmussen, Identification of Gaussian Process State-Space Models with Particle Stochastic Approximation EM
- T. Beckers, J. Umlauft, and S. Hirsche, Stable Model-Based Control with Gaussian Process Regression for Robot Manipulators,
- A. Marco, P. Hennig, S. Schaal, S. Trimpe, On the Design of LQR Kernels for Efficient Controller Learning, arXiv:1709.07089v1
- N. Gorbach, S. Bauer, J. Buhmann, Scalable Variational Inference for Dynamical Systems, NIPS 2017, Long Beach, CA, 2017.
- J. Umlauft, T. Beckers, M. Kimmel, S. Hirsche, Feedback Linearization Using Gaussian Processes
- F. Lindsten, M.I. Jordan, T.B. Schon, Particles Gibbs with Ancestor Sampling, J. Machine Learning Research, vo. 15, pp. 2145-2184.
Deep Learning
Papers on Deep Learning
- Soatto Paper
Web Links
Koopman Spectral Method
Papers on Koopman Spectral methods
- S. Brunton, J. Proctor, N. Kutz, Discovering Governing Equations from Data: Sparse Identification of Nonlinear Dyanmical Systems, arXiv:1509.03580v1
- M. Budisic, R. Mohr, I. Mezic, Applied Koopmanism, Chaos, vol. 22, 2012.
- J.L. Proctor, S.L. Brunton, J.N. Kutz, Dynamic Mode Decomposition with Control, SIAM J. Applied Dynamical Systems, vol. 15, no. 1, pp. 142-161, 2016.
- Papers which focus on fluids
- I. Mezic, Analysis of Fluid Flows via Spectral Properties of the Koopman Operator, Annual Review of Fluids, vol. 45, 357-378, 2013.