Difference between revisions of "GP SSM"

From Robotics
Jump to: navigation, search
(Deep Learning)
m (Basic Gaussian Process Info)
 
(14 intermediate revisions by 2 users not shown)
Line 7: Line 7:
  
 
=== Basic Gaussian Process Info ===
 
=== Basic Gaussian Process Info ===
* Rasmussen and Williams
+
* [[Media:RasumussenWilliamsBook.pdf | Gaussian Processes For Machine Learning]], by Rasmussen and Williams
 +
* [[Media:ModellingControlDynamicSystemsGPs.pdf | Modeling and Control of Dynamic Systems Processes Using Gaussian Processes Models]] by J. Kocijan
  
 
=== Web Links ===
 
=== Web Links ===
Line 45: Line 46:
 
== Deep Learning ==
 
== Deep Learning ==
  
=== Papers on Deep Learning ===
+
=== Papers on Deep Learning ''Theory'' ===
 
* This is the paper that we seek to understand in this reading group.
 
* This is the paper that we seek to understand in this reading group.
** A. Achile and S. Soatto, [[Media:InvarianceDisentanglement.pdf | Emergence of Invariance and Disentanglement in Deep Representations]], ''arXiV:1706.01350v2'', Oct. 2017.
+
** A. Achille and S. Soatto, [[Media:InvarianceDisentanglement.pdf | Emergence of Invariance and Disentanglement in Deep Representations]], ''arXiV:1706.01350v2'', Oct. 2017.
* P. Chauderi, A.Oberman, S. Osher, S. Soatto, G. Ccarlier, [[Media:DeepNetPDEs.pdf | Deep Relaxation: Partial Differential Equations for Optimizing Deep Neural Networks]], ''arXiV:1704.04932v2''
+
* Here are some background papers (i.e., links to many of the references in the Achille and Soatto paper)
* Here are some background papers
+
** A. Achille and S. Soatto [https://arxiv.org/pdf/1611.01353.pdf  Information Dropout: Learning Optimal Representations Through Noisy Computation]
 +
** A. Alemi, I. Fischer, K. Dillon, and K. Murphey, [https://arxiv.org/abs/1612.00410 Deep Variational Information Bottleneck], ''arXiV:1612.00410''
 +
** F. Anselmi, L. Rosasco, T. Poggio, [https://arxiv.org/pdf/1503.05938.pdf On Invariance and Selectivity in Representation Learning]
 +
** Y. Bengio [https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf Learning Deep Architectures for AI], 2009.
 +
** J. Bruna and S. Mallat, [http://www.cmap.polytechnique.fr/scattering/scattering_cvpr2011.pdf Classification with Scattering Operators], ''CVPR'', 2011.
 +
** P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, R. Zecchina [https://arxiv.org/abs/1611.01838 Entropy-SGD: Biasing Gradient Descent into Wide Valleys], ''Proceedings of the International Conference on Learning Representations (ICLR)'', 2017.
 
** N. Tishby and N. Zaslavsky, [[Media:DeepLearningBottleneck.pdf | Deep Learning and the Information Bottleneck Principle]], ''arXiv:1503.02406'', March, 2015.
 
** N. Tishby and N. Zaslavsky, [[Media:DeepLearningBottleneck.pdf | Deep Learning and the Information Bottleneck Principle]], ''arXiv:1503.02406'', March, 2015.
 +
** D.-A. Clevert, T. Unterthiner, and S. Hochreiter, [https://arxiv.org/abs/1511.07289 Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)], ''arXiv:1511.07289''.
 +
** L. Dinh, R. Pascanu, S. Bengio, Y. Bengio [https://arxiv.org/abs/1703.04933 Sharp Minima Can Generalize For Deep Nets], ''arXiv:1703.04933''
 +
 +
* P. Chauderi, A.Oberman, S. Osher, S. Soatto, G. Ccarlier, [[Media:DeepNetPDEs.pdf | Deep Relaxation: Partial Differential Equations for Optimizing Deep Neural Networks]], ''arXiV:1704.04932v2''
  
 
==== Review-like papers ====
 
==== Review-like papers ====
 +
* J. Schmidhuber, [https://arxiv.org/pdf/1404.7828.pdf Deep Learning in Neural Networks: An Overview], ''arXiV:404.7828v4'', Oct. 2014.
 
* S. Mallat, [[Media:UnderstandingDeepCNNs.pdf | Understanding Deep Convolutional Networks]], ''Phil. Trans. Royal Society, A, vol. 374, May 15, 2017.
 
* S. Mallat, [[Media:UnderstandingDeepCNNs.pdf | Understanding Deep Convolutional Networks]], ''Phil. Trans. Royal Society, A, vol. 374, May 15, 2017.
 
* M.D. Zeiler and R. Fergus, [https://arxiv.org/abs/1311.2901  Visualizing and Understanding Deep Convolutional Networks]
 
* M.D. Zeiler and R. Fergus, [https://arxiv.org/abs/1311.2901  Visualizing and Understanding Deep Convolutional Networks]
Line 58: Line 69:
 
==== Papers on Scattering Networks ====
 
==== Papers on Scattering Networks ====
 
''Scattering Networks'' are proposed by Stephan Mallat (of wavelet fame) to understand why deep nets work so well.
 
''Scattering Networks'' are proposed by Stephan Mallat (of wavelet fame) to understand why deep nets work so well.
*
+
* S. Mallat [[Media:GroupInvariantScattering.pdf | Group Invariant Scattering]], 2012.
 +
* J. Anden, S. Mallat, [[Media:DeepScatteringSpectrum.pdf | Deep Scattering Spectrum]], 2015.
 +
* J. Bruna, S. Mallat, [[Media:InvariantScatteringCNNs.pdf | Invariant Scattering Convolution Networks]]
  
 
==== Classics ====
 
==== Classics ====
Line 64: Line 77:
  
 
=== Web Links ===
 
=== Web Links ===
** [http://deeplearning.net Deeplearning.net]
+
* [http://deeplearning.net Deeplearning.net]; [http://deeplearningbook.org/ On-line Deep Learning TextBook]
  
 
== Koopman Spectral Method ==
 
== Koopman Spectral Method ==
Line 85: Line 98:
 
* A. Surana, [[Media:KoopmanObserverBasedSynthesis.pdf | Koopman Based Operator Synthesis for Control-Affine Noninear Systems]], ''Proc. IEEE Conf. Decision and Control'', 2016
 
* A. Surana, [[Media:KoopmanObserverBasedSynthesis.pdf | Koopman Based Operator Synthesis for Control-Affine Noninear Systems]], ''Proc. IEEE Conf. Decision and Control'', 2016
 
* A. Surana and A. Banaszuk, [[Media:LinearObserverSynthesis.pdf | Linear Observer Synthesis for Nonlinear Systems Using Koopman Operator Framework]], ''IFAC Papers Online'', 49-18, pp. 716-723, 2016.
 
* A. Surana and A. Banaszuk, [[Media:LinearObserverSynthesis.pdf | Linear Observer Synthesis for Nonlinear Systems Using Koopman Operator Framework]], ''IFAC Papers Online'', 49-18, pp. 716-723, 2016.
 +
* E. Kaiser, N. Kutz, and S. Brunton, [[Media: sparseMPC.pdf | Sparse identification of nonlinear dynamics for model predictive control in the low-data limit]] ''arXiv preprint'' arXiv:1711.05501 (2017).
  
 
==== Papers which are more oriented toward fluids ====
 
==== Papers which are more oriented toward fluids ====

Latest revision as of 16:43, 15 June 2018

This page gathers references and materials related to the study of

  • Gaussian Process (GP) State Space Models (SSM)
  • Deep Learning
  • Koopman Spectral Methods.

Gaussian Process Approaches

Basic Gaussian Process Info

Web Links

Papers on GP-SSMs


Deep Learning

Papers on Deep Learning Theory

Review-like papers

Papers on Scattering Networks

Scattering Networks are proposed by Stephan Mallat (of wavelet fame) to understand why deep nets work so well.

Classics

Web Links

Koopman Spectral Method

Papers on Koopman Spectral methods

Papers which are more oriented toward control

Papers which are more oriented toward fluids

Some Early Papers

Other Papers