Difference between revisions of "ME115 2016"

From Robotics
Jump to: navigation, search
m (Closed Loop Mechanisms and Parallel Mechanisms)
m (Parallel Mechanisms to Redundant manipulators)
Line 133: Line 133:
 
| [http://robotics.caltech.edu/~jwb/courses/ME115/handouts/DeltaKinematics.pdf Paper on Delta Kinematics]
 
| [http://robotics.caltech.edu/~jwb/courses/ME115/handouts/DeltaKinematics.pdf Paper on Delta Kinematics]
 
| [http://robotics.caltech.edu/~jwb/courses/ME115/handouts/DeltaRobotHistory.pdf History of Delta Mechanism]; [http://robotics.caltech.edu/~jwb/courses/ME115/handouts/DeltaMechanismSingularities.pdf Singularities of Delta Mechanisms];
 
| [http://robotics.caltech.edu/~jwb/courses/ME115/handouts/DeltaRobotHistory.pdf History of Delta Mechanism]; [http://robotics.caltech.edu/~jwb/courses/ME115/handouts/DeltaMechanismSingularities.pdf Singularities of Delta Mechanisms];
| rowspan=4 align=center | [http://robotics.caltech.edu/~jwb/courses/ME115/homework/set2b.16.pdf Homework 2]
+
| rowspan=3 align=center | [http://robotics.caltech.edu/~jwb/courses/ME115/homework/set2b.16.pdf Homework 2]
  
 
|-
 
|-

Revision as of 21:49, 29 March 2016

This is the homepage for ME 115(a,b) (Introduction to Kinematic and Robotics) for Winter/Spring 2016.

Course Staff, Hours, Location

Position Name Office Office Hours (changing weekly) Email Phone
Instructor Joel Burdick 245 Gates-Thomas send mail for an appointment jwb at robotics dot caltech dot edu 626-395-4139
Teach Asst. Nikola Georgiev 205 Gates-Thomas Wed. Feb. 17, SFL Group Study room 220 (#2-2), 4-5:00 pm
Thurs. Feb. 18, SFL Group Study Room 220 (#2-2) 6-7 pm
georgiev at caltech dot edu 626-395-????
Teach Asst. Yoke Peng Leong Annenberg TBD ypleong at caltech dot edu 626-395-????
Administrative Sonya Lincoln 250 Gates-Thomas 7:30am-noon; 1:00pm-4:30pm lincolns at caltech dot edu 626-395-3385


  • Lecture Schedule: Monday, Wednesday, Friday 10:00-11:00 am, Gates-Thomas 135

Announcements For ME 115(b)

Course Text and References

The main course text is:

We will refer to this text as MLS (the initials of the authors last names). While the course topics will follow the text subjects, additional material not in the text will often be presented in class. Additional course handouts covering this material will be posted on this website

Course Syllabus

Theoretical Kinematics is the study of motion and the analytical tools to represent motion, while Applied Kinematics is the analysis and synthesis of mechanisms which implement given motions. This course presents a basic overview of theoretical kinematics, while the applied portions focus on robotic mechanisms.

An overview of the course, including course mechanics, grading, etc. The most salient information is repeated below.

Grading

The final grade will be based on homework sets, and a final exam or final project:

  • Homework (70%): Homework sets will be handed out every 7-10 days, and are due at 5 pm on the due date (which will always coincide with a class meeting). Homeworks can be dropped off in class, or deposited in the box outside of 245 Gates-Thomas. Some homeworks will require computation. MATLAB or Mathematica should be sufficient to solve every homework posed in this course, though students can choose their favorite programming language. Code is considered part of your solution and should be included in with the problem set when appropriate.
  • Final exam/project (30%): Students have the option to take a final exam (a limited time take-home format exam which is open book, open note, and computer allowed) or select a final project. The final project must incorporate some aspect of the course, and the topic and scope my be approved by the course instructor. The final exam will due at 5:00 pm the last day of finals. The final project is similarly due at 5:00 pm on the last day of finals.
  • Late Homework Policy: Students may automatically take a 2-day extension on two homeworks during each quarter.

Collaboration Policy

Collaboration on homework assignments is encouraged. You may consult outside reference materials, other students, the TA, or the instructor, but you must cite any use of material from outside references. All solutions that are handed in should be written up individually and should reflect your own understanding of the subject matter. Computer code and graphical plots are considered part of your solution, and therefore should be done individually (you can share ideas, but not code). No collaboration is allowed on the examinations.

Course Schedule for ME115(b)

Week Date Topic Reading Optional Reading Homework
1

From Manipulator Singularities to Closed Loop Mechanisms

28 March (M) Manipulator Singularities (concluded)
Intro to Closed Loop Mechanisms
-N/A- -N/A- Homework 1
30 March (W) Closed Loop Linkages: Structure Equations & Mobility Murray, Li Sastry (MLS), Section 3.4 -N/A-
1 April (F) Closed Loop Linkages: Special Configurations Murray, Li Sastry (MLS), Section 3.4 -N/A-
2

Closed Loop Mechanisms and Parallel Mechanisms

4 April (M) Closed Loop Linkages: Multi-Loop Linkages MLS, Section 3.5 -N/A- -No Homework-
6 April (W) Intro to Parallel Linkages -N/A- -N/A-
8 April (F) The Delta Mechanism/Intro to Grasping MLS Section 3.5
3

Parallel Mechanisms to Redundant manipulators

11 April (M) The Delta Mechanism Paper on Delta Kinematics History of Delta Mechanism; Singularities of Delta Mechanisms; Homework 2
13 April (W) Redundant Mechanisms and PseudoInverse -N/A-
15 April (F) Redundancy resolution and trajectory planning -N/A- -N/A-
4

From Deltas to Grasping

18 April (M) Intro to Grasping MLS Chapt 5.1 Homework 3
20 April (W) Contact Models Section 5.2 of the MLS text -N/A-
22 April (F) The Grasp Map and Secure grasps Section 5.2 of the MLS Text -N/A-
5

Force Closure Grasps

25 April (M) No Class (due to travel) -N/A- -N/A- -N/A-
27 April (W) Force Closure Grasps Section 5.3 of the MLS Text -N/A-
29 April (F) Force Closure (continued) Section 5.3, 5.4 of the MLS Text -N/A-
6

Force Closure Grasps

2 May (M) No Class (due to travel) -N/A- -N/A- -N/A-
4 May (W) No Class (due to travel) -N/A- -N/A-
6 May (F) Force Closure (continued)/Number of required fingers Section 5.4 of the MLS Text -N/A-
7

Yet more Robotic Grasping

9 May (M) Number of fingers needed to grasp an object Section 5.4 of MLS Text -N/A- Homework 5
11 May (W) Grasp Planning/Hand Kinematics Section 5.5 of MLS Text -N/A-
13 May (F) Hand Kinematics Section 5.5 of the MLS Text -N/A-
8

Yet more Robotic Grasping

16 May (M) Differential Geometry of Curves Section 5.6 of MLS text
Notes on the Differential Geometry of Curves
-N/A- -N/A-
18 May (W) Planar Contact Equations Section 5.6 of MLS Text
Notes on the Planar Contact Equations
-N/A-
20 May (F) No Class due to travel -N/A- -N/A-
3

Closed Loop Mechanisms/4-Bar Linkages

11 April (M) The Delta Mechanism Paper on Delta Kinematics History of Delta Mechanism; Singularities of Delta Mechanisms; Homework 2
13 April (W) Special Configurations/4-Bar Linkage Design -N/A- 4-Bar Coupler Curve; 4-Bar cyclist; Hoeken\'s 4-Bar D-path generator Tchebychef straight-line 4bar; Watt Straight-Line 4-Bar; Jansen Walker Mechanism; Pantograph; Drafting Linkage; Conveyor Indexing; Stone Crusher;
15 April (F) 4-Bar Synthesis: Graphical Techniques and Standard Dyad Equation -N/A- -N/A-


Course Schedule for ME115(a)

Week Date Topic Reading Optional Reading Homework
1
Introduction and Review of Rigid Body Kinematics
4 Jan (Mon.) Class Overview Course Overview,
Chapter 1 of MLS
History of Kinematics Through 1900 (Introductory chapter from Kinematic Synthesis of Linkages) -No Homework-
6 Jan (W) Planar Rigid Body Kinematics,
Planar displacements
MLS Ch 2.1, Pages 19-23 -N/A-
8 Jan (F) Planar Rigid Body Displacements (continued),
Displacement groups
MLS Ch 2.1, -N/A-
2
From Planar Rigid Body Kinematics to Spherical Kinematics
11 Jan (M) Displacement groups, poles
Planar Displacements (PowerPoint)
-N/A- Homework 1,
Solution 1
13 Jan (W) Centrodes: Ellliptical Trammel,
Trammel, V 1, V 2, compliation

Intro to Spherical Kinematics

MLS Pages 22-26,
Notes on the Elliptical Trammel,
Archemides Trammel (Wikipedia)
Polyhedral Linkages Synthesized Using Cardan Motion Along Radial Lines
15 Jan (F) Spherical Kinematics (continued),
Classical Matrix Groups
MLS Ch 2.2, 2.3,
Notes on the Classical Matrix Groups
-N/A-
3
Spherical Kinematics
18 Jan (M) No Class: Marin Luther King Holiday -N/A- -N/A- No Homework
20 Jan (W) Cayley's Theorem,
MLS 27-31,
Notes on Rotations
-N/A-
22 Jan (F) No Class MLS 31-34 -N/A-
4
Spherical Kinematics (continued)
25 Jan (M) Angle/Axis Representation and Rodriguez Formula MLS 34-39 Notes on Algebras -N/A-
27 Jan (W) No Class -N/A- -N/A-
29 Jan (W) No Class -N/A- -N/A-
5
Spatial Kinematics
1 Feb (M) No Class -N/A- -N/A- Homework 2,
Solution 2
3 Feb (W) Exponential Coordinates and Euler Angles MLS Ch 2.2, 2.3 -N/A-
5 Feb (F) Quaternions MLS Pages 51-52 -N/A-
6
Spatial Kinematics (continued)
8 Feb (M) Quaternions (continued),
Intro to Spatial Kinematics
MLS 34-39 Notes on Algebras Homework 3,
Solution 3
8 Feb (M) Spatial Displacments,
Chasle's Theorem, Exponential Coordinates
MLS Pages 35-50 -N/A-
10 Feb (W) Motion Capture
Rigid Body Velocities
MLS Pages 51-61; Rodriguez' Displacement Equation; -N/A-
12 Feb (F) No Class -N/A- -N/A-


7
Spatial Kinematics: Velocities and Wrenches
15 Feb (M) No Class: President's Day Holiday MLS Ch 2.3; -N/A- Homework 4,
Solution 4
17 Feb (W) Rigid Body Velocities (continued) MLS Ch 2.3 -N/A-
19 Feb(F) Transformation of Velocities
Wrenches and Poinsot's Theorem
MLS Ch 2.4-2.5 -N/A-
8
Robot Manipulators
22 Feb (M) Wrenches (continued),
Screw Theory
-N/A- -N/A- No Homework
22 Feb (M) Robot Manipulators: Introduction MLS Chapter 3, pages 81-94 -N/A-
23 Feb (W) Denavit Hartenberg Convention MLS Chapter 3, pages 81-94 -N/A-
25 Feb(F) Forward Kinematics via the Denavit-Hartenberg Convention MLS Ch 3, DH-Parameters (from Wikipedia),
Scan from Craig Book on D-H Parameters
9
Forward/Inverse Kinematics
29 Feb (M) Denavit-Hartenberg Convention (continued), Examples MLS Ch 3; Rodriguez' Displacement Equation; -N/A- Homework 5,
Solution 5
2 Mar (W) Product of Exponentials Formula MLS Ch 3 -N/A-
4 Mar(F) Inverse Kinematics MLS Ch 3 -N/A-
10
Jacobian Matrix and Singularities
7 Mar (M) Manipulator Jacobian Matrices MLS Ch 3, pages 115-120; -N/A- Optional Homework 6
7 Mar (M) Jacobian Matrix (continued), End-effector forces MLS Ch 3, 121-123; -N/A-
9 Mar (W) Manipulator Singularities MLS Ch 3, pp 123-127 -N/A-

Announcements For ME 115(a)

  • 03/21/16: Here is the Final Exam Solution
  • 03/13/16: Here is the Final Exam. The exam instructions are located on the first page. Good luck!
  • 02/22/16: Here are the Final Project Guidelines
  • 02/19/16: Homework #2 is graded. You can pick it up from Sonya Lincoln, or pick it up in class starting Monday Feb. 22
  • 02/17/16: T.A. Office hours this week:
    • Wed. Feb. 17, SFL Group Study room 220 (#2-2), 4-5:00 pm
    • Thurs. Feb. 18, SFL Group Study Room 220 (#2-2) 6-7:00 pm
  • 02/08/16: T.A. Office hours this week:
    • Mon. Feb. 8, SFL Group Study room 220 (#2-2), 4-5:00 pm
    • Tues. Feb. 9, SFL Group Study Room 220 (#2-2) 8-9:00 pm
  • 02/05/16: We need an extra class per week to catch up with the missed classes. The same lecture will be given twice on Mondays. You need attend only one of the following lectures.
    • 11:00am-noon in 135 Gates-Thomas
    • 7:30-8:30 pm in 135 Gates-Thomas
  • 02/01/16: Class WILL be held on Wednesday, Feb. 3, 2016 at the usual time and location
  • 02/01/16: There will be NO class on Monday, Feb. 1, 2016.
  • 01/15/16: Office hours for Homework 1
    • Nikola Georgiev will hold office hours on Monday January 18 and Tuesday, January 19 from 8-9 pm in the Sherman Fairchild Library Group Study Room 229 (#2-3).
    • Joel Burdick will hold an office hours from 3-4 pm and 4:30-5:30 pm on Tuesday Jan. 19 in Gates-Thomas 245
  • 01/14/16: On Wed. February 17, 2016 class will take place in Gates-Thomas 115 (just for that one lecture).
  • 01/11/16: Homework #1 will be available during the evening of Mon., Jan. 11. Due Wed. Jan 20.
  • 01/09/16: The class time is tentative set (see lecture schedule above)
  • 01/04/16: The class time (and probably location) will be changed in order to allow the maximum number of students to participate. Look for updates.